3,568 research outputs found
Enhancing Icing Training for Pilots Through Web-Based Multimedia
The Aircraft Icing Project of the NASA Aviation Safety Program has developed a number of in-flight icing education and training aids designed to increase pilot awareness about the hazards associated with various icing conditions. The challenges and advantages of transitioning these icing training materials to a Web-based delivery are discussed. Innovative Web-based delivery devices increased course availability to pilots and dispatchers while increasing course flexibility and utility. These courses are customizable for both self-directed and instructor-led learning. Part of our goal was to create training materials with enough flexibility to enable Web-based delivery and downloadable portability while maintaining a rich visual multimedia-based learning experience. Studies suggest that using visually based multimedia techniques increases the effectiveness of icing training materials. This paper describes these concepts, gives examples, and discusses the transitional challenges
A call to introduce newborn screening for spinal muscular atrophy (SMA) in Scotland
Peer reviewedPublisher PD
Abnormalities of the p53 MDM2 and DCC genes in human leiomyosarcomas.
In this study we have screened a series of 29 primary leiomyosarcomas for abnormalities of both the p53 gene and the MDM2 gene, which encodes a p53-associated protein. SSCP (single-strand conformation polymorphism) analysis and direct sequencing of polymerase chain reaction (PCR)-amplified DNA were used to establish that 6/29 tumours possessed point mutations of the p53 gene. Using a monoclonal antibody that recognises the p53 protein in immunohistochemical staining experiments, we observed overexpression of the p53 protein in five of the six tumours containing point mutations in the p53 gene. Southern analysis of tumour DNA revealed that 2/29 tumours demonstrated amplification of the MDM2 gene. When considered together, these results indicate that alterations in both the p53 gene and MDM2 gene are important in the development of a significant minority of leiomyosarcomas. In addition, we have demonstrated a significant association between the presence of abnormalities of the p53 gene or MDM2 genes in leiomyosarcomas and a more advanced clinicopathological stage (P = 0.03). We have also examined the role of the DCC tumour-suppressor gene in the development of human soft-tissue tumours in a variety of histological types. Except for evidence of a rearrangement in a single leiomyosarcoma cell line, SK-UT-1, we have found no direct evidence to support a role for mutation of the gene in the development of human soft-tissue tumours
Cricket, migration and diasporic communities
Ever since different communities began processes of global migration, sport has been an integral feature in how we conceptualise and experience the notion of being part of a diaspora. Sport provides diasporic communities with a powerful means for creating transnational ties, but also shapes ideas of their ethnic and racial identities. In spite of this, theories of diaspora have been applied sparingly to sporting discourses. Due mainly to its central role in spreading dominant white racial narratives within the British Empire, and the various ways different ethnic groups have ‘played’ with the meanings and associations of the sport in the (post-)colonial period, cricket is an interesting focus for academic research. Despite W.G. Grace’s claim that cricket advances civilisation by promoting a common bond, binding together peoples of vastly different backgrounds, to this day cricket operates strict symbolic boundaries; defining those who do, and equally, do not belong. C.L.R. James’ now famous metaphor of looking ‘beyond the boundary’ captures the belief that, to fully understand the significance of cricket, and the sport’s roles in changing and shaping society, one must consider the wider social and political contexts within which the game is played. The collection of papers in this special issue does just that. Cricket acts as the point of departure in each, but the way in which ideas of power, representation and inequality are ‘played out’ is unique in each
Group analysis of DTI fiber tract statistics with application to neurodevelopment
Diffusion tensor imaging (DTI) provides a unique source of information about the underlying tissue structure of brain white matter in vivo including both the geometry of major fiber bundles as well as quantitative information about tissue properties represented by derived tensor measures. This paper presents a method for statistical comparison of fiber bundle diffusion properties between populations of diffusion tensor images. Unbiased diffeomorphic atlas building is used to compute a normalized coordinate system for populations of diffusion images. The diffeomorphic transformations between each subject and the atlas provide spatial normalization for the comparison of tract statistics. Diffusion properties, such as fractional anisotropy (FA) and tensor norm, along fiber tracts are modeled as multivariate functions of arc length. Hypothesis testing is performed non-parametrically using permutation testing based on the Hotelling T2 statistic. The linear discriminant embedded in the T2 metric provides an intuitive, localized interpretation of detected differences. The proposed methodology was tested on two clinical studies of neurodevelopment. In a study of one and two year old subjects, a significant increase in FA and a correlated decrease in Frobenius norm was found in several tracts. Significant differences in neonates were found in the splenium tract between controls and subjects with isolated mild ventriculomegaly (MVM) demonstrating the potential of this method for clinical studies
Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain
The human brain undergoes rapid and dynamic development early in life. Assessment of brain growth patterns relevant to neurological disorders and disease requires a normative population model of growth and variability in order to evaluate deviation from typical development. In this paper, we focus on maturation of brain white matter as shown in diffusion tensor MRI (DT-MRI), measured by fractional anisotropy (FA), mean diffusivity (MD), as well as axial and radial diffusivities (AD, RD). We present a novel methodology to model temporal changes of white matter diffusion from longitudinal DT-MRI data taken at discrete time points. Our proposed framework combines nonlinear modeling of trajectories of individual subjects, population analysis, and testing for regional differences in growth pattern. We first perform deformable mapping of longitudinal DT-MRI of healthy infants imaged at birth, 1 year, and 2 years of age, into a common unbiased atlas. An existing template of labeled white matter regions is registered to this atlas to define anatomical regions of interest. Diffusivity properties of these regions, presented over time, serve as input to the longitudinal characterization of changes. We use non-linear mixed effect (NLME) modeling where temporal change is described by the Gompertz function. The Gompertz growth function uses intuitive parameters related to delay, rate of change, and expected asymptotic value; all descriptive measures which can answer clinical questions related to quantitative analysis of growth patterns. Results suggest that our proposed framework provides descriptive and quantitative information on growth trajectories that can be interpreted by clinicians using natural language terms that describe growth. Statistical analysis of regional differences between anatomical regions which are known to mature differently demonstrates the potential of the proposed method for quantitative assessment of brain growth and differences thereof. This will eventually lead to a prediction of white matter diffusion properties and associated cognitive development at later stages given imaging data at early stages
The AAMC Standardized Video Interview: Reactions and Use by Residency Programs During the 2018 Application Cycle
PURPOSE: To evaluate how emergency medicine (EM) residency programs perceived and used Association of American Medical Colleges (AAMC) SVI total scores and videos during the Electronic Residency Application Service (ERAS) 2018 cycle.
METHOD: Study 1 (November 2017) used a program director survey to evaluate user reactions to the SVI following the first year of operational use. Study 2 (January 2018) analyzed program usage of SVI video responses using data collected through the AAMC Program Director\u27s Workstation.
RESULTS: Results from the survey (125/175 programs, 71% response rate) and video usage analysis suggested programs viewed videos out of curiosity and to understand the range of SVI total scores. Programs were more likely to view videos for attendees of U.S. MD-granting medical schools and applicants with higher United States Medical Licensing Examination Step 1 scores, but there were no differences by gender or race/ethnicity. More than half of programs that did not use SVI total scores in their selection processes were unsure of how to incorporate them (36/58, 62%) and wanted additional research on utility (33/58, 57%). More than half of programs indicated being at least somewhat likely to use SVI total scores (55/97; 57%) and videos (52/99; 53%) in the future.
CONCLUSIONS: Program reactions on the utility and ease of use of SVI total scores were mixed. Survey results indicate programs used the SVI cautiously in their selection processes, consistent with AAMC recommendations. Future surveys of SVI users will help the AAMC gauge improvements in user acceptance and familiarity with the SVI
- …