18,001 research outputs found

    Study and simulation results for video landmark acquisition and tracking technology (Vilat-2)

    Get PDF
    The results of several investigations and hardware developments which supported new technology for Earth feature recognition and classification are described. Data analysis techniques and procedures were developed for processing the Feature Identification and Location Experiment (FILE) data. This experiment was flown in November 1981, on the second Shuttle flight and a second instrument, designed for aircraft flights, was flown over the United States in 1981. Ground tests were performed to provide the basis for designing a more advanced version (four spectral bands) of the FILE which would be capable of classifying clouds and snow (and possibly ice) as distinct features, in addition to the features classified in the Shuttle experiment (two spectral bands). The Shuttle instrument classifies water, bare land, vegetation, and clouds/snow/ice (grouped)

    High-level cognition during story listening is reflected in high-order dynamic correlations in neural activity patterns

    Get PDF
    Our thoughts arise from coordinated patterns of interactions between brain structures that change with our ongoing experiences. High-order dynamic correlations in neural activity patterns reflect different subgraphs of the brain’s functional connectome that display homologous lower-level dynamic correlations. Here we test the hypothesis that high-level cognition is reflected in high-order dynamic correlations in brain activity patterns. We develop an approach to estimating high-order dynamic correlations in timeseries data, and we apply the approach to neuroimaging data collected as human participants either listen to a ten-minute story or listen to a temporally scrambled version of the story. We train across-participant pattern classifiers to decode (in held-out data) when in the session each neural activity snapshot was collected. We find that classifiers trained to decode from high-order dynamic correlations yield the best performance on data collected as participants listened to the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled versions of the story yielded the best performance when they were trained using first-order dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts become more complex, they are reflected in higher-order patterns of dynamic network interactions throughout the brain

    On Pair Production in the Crab Pulsar

    Full text link
    We consider the widespread assumption that coherent pulsar radio emission is based on extended pair production leading to plasma densities highly exceeding the Goldreich-Julian density. We show as an example that the observed low frequency (160 MHz) emission of the Crab pulsar is incompatible to the model of extended pair production. Our results rule out significant pair production if a plasma process is responsible for coherence and the radio emission originates from inside the light cylinder.Comment: accepted for publication in ApJ Letters; 4 pages, no figure

    Attitude Determination and Control System With Variable-Speed Single-Gimbal Control Moment Gyroscopes for Nanosatellites

    Get PDF
    This paper presents a novel Attitude Determination and Control System (ADCS) utilizing Variable-Speed Control Moment Gyroscopes (VSCMG) tailored explicitly for nanosatellites. The VSCMG was realized by spherical motor technology, in which a patented magnetic field design controls the inner rotor and gimbal. Because of the characteristics of the control moment gyroscope, the proposed ADCS offers improved attitude maneuverability and reduced power consumption, addressing the limitations of traditional ADCS solutions for nanosatellites. Furthermore, the adoption of spherical motor technology shrinks the VSCMG into a smaller form factor, which allows the VSCMG to be fitted into a nanosatellite. This research paper introduces the specifications of the integrated ADCS family based on VSCMG, as well as the components used in the system

    Biology of biomechanics: Finite Element Analysis of a Statically Determinate System to Rotate the Occlusal Plane for Correction of Skeletal Class III Openbite Malocclusion

    Get PDF
    Introduction In the absence of adequate animal or in-vitro models, the biomechanics of human malocclusion must be studied indirectly. Finite element analysis (FEA) is emerging as a clinical technology to assist in diagnosis, treatment planning, and retrospective analysis. The hypothesis tested is that instantaneous FEA can retrospectively simulate long-term mandibular arch retraction and occlusal plane rotation for the correction of a skeletal Class III malocclusion. Methods Seventeen published case reports were selected of patients treated with statically determinate mechanics using posterior mandible or infrazygomatic crest bone screw anchorage to retract the mandibular arch. Two-dimensional measurements were made for incisor and molar movements, mandibular arch rotation, and retraction relative to the maxillary arch. A patient with cone-beam computed tomography imaging was selected for a retrospective FEA. Results The mean age for the sample was 23.3 ± 3.3 years; there were 7 men and 10 women. Mean incisor movements were 3.35 ± 1.55 mm of retraction and 2.18 ± 2.51 mm of extrusion. Corresponding molar movements were retractions of 4.85 ± 1.78 mm and intrusions of 0.85 ± 2.22 mm. Retraction of the mandibular arch relative to the maxillary arch was 4.88 ± 1.41 mm. Mean posterior rotation of the mandibular arch was –5.76° ± 4.77° (counterclockwise). The mean treatment time (n = 16) was 36.2 ± 15.3 months. Bone screws in the posterior mandibular region were more efficient for intruding molars and decreasing the vertical dimension of the occlusion to close an open bite. The full-cusp, skeletal Class III patient selected for FEA was treated to an American Board of Orthodontics Cast-Radiograph Evaluation score of 24 points in about 36 months by en-masse retraction and posterior rotation of the mandibular arch: the bilateral load on the mandibular segment was about 200 cN. The mandibular arch was retracted by about 5 mm, posterior rotation was about 16.5°, and molar intrusion was about 3 mm. There was a 4° decrease in the mandibular plane angle to close the skeletal open bite. Retrospective sequential iterations (FEA animation) simulated the clinical response, as documented with longitudinal cephalometrics. The level of periodontal ligament stress was relatively uniform (<5 kPa) for all teeth in the mandibular arch segment. Conclusions En-masse retraction of the mandibular arch is efficient for conservatively treating a skeletal Class III malocclusion. Posterior mandibular anchorage causes intrusion of the molars to close the vertical dimension of the occlusion and the mandibular plane angle. Instantaneous FEA as modeled here could be used to reasonably predict the clinical results of an applied load

    Spin-independent elastic WIMP scattering and the DAMA annual modulation signal

    Get PDF
    We discuss the interpretation of the annual modulation signal seen in the DAMA experiment in terms of spin-independent elastic WIMP scattering. Taking into account channeling in the crystal as well as the spectral signature of the modulation signal we find that the low-mass WIMP region consistent with DAMA data is confined to WIMP masses close to mχ≃12m_\chi \simeq 12 GeV, in disagreement with the constraints from CDMS and XENON. We conclude that even if channeling is taken into account this interpretation of the DAMA modulation signal is disfavoured. There are no overlap regions in the parameter space at 90% CL and a consistency test gives the probability of 1.2×10−51.2\times 10^{-5}. We study the robustness of this result with respect to variations of the WIMP velocity distribution in our galaxy, by changing various parameters of the distribution function, and by using the results of a realistic N-body dark matter simulation. We find that only by making rather extreme assumptions regarding halo properties can we obtain agreement between DAMA and CDMS/XENON.Comment: 21 pages, 12 figures, matches version accepted in JCA

    What do we actually know about a common cause of plantar heel pain?:A scoping review of heel fat pad syndrome

    Get PDF
    BACKGROUND: The heel fat pad is an important structure of the foot as it functions as a cushion to absorb shock and distribute plantar force during ambulation. Clinical practice guidelines or decision support platforms emphasize that heel fat pad syndrome (HFPS) is a distinct pathology contributing to plantar heel pain. We aimed to identify and synthesize the prevalence, etiology and diagnostic criteria, and conservative management of HFPS. METHODS: A comprehensive search was conducted in May 2021 and updated in April 2022, using MEDLINE, Scopus, Cinahl, EMBASE, Cochrane Library, SPORTDiscus, and PEDro and ClinicalTrials.gov and the World Health Organization's International Clinical Trials Registry Platform (ICTRP) for pertinent registrations. We included all study types and designs describing the prevalence; etiology and diagnostic criteria; and non-pharmacological, non-surgical interventions for HFPS. RESULTS: We found a small body of original research for HFPS (n = 7). Many excluded full-text articles were expert-opinion articles or studies of heel fat pad in participants with plantar fasciitis/fasciopathy or unspecified heel pain. HFPS may be the second leading cause of plantar heel pain, based on two studies. A number of differentiating pain characteristics and behaviors may aid in diagnosing HFPS vs. plantar fasciopathy. Thinning heel fat pad confirmed by ultrasonography may provide imaging corroboration. Randomized controlled trials assessing the efficacy of viscoelastic heel cups or arch taping for managing HFPS do not exist. CONCLUSIONS: The research literature for HFPS is sparse and sometimes lacking scientific rigor. We have identified a substantial knowledge gap for this condition, frequent inattention to distinguishing HFPS from plantar fasciopathy when describing plantar heel pain, and an absence of robust clinical trials to support the commonly recommended conservative management of HFPS

    Attitude Control Calibration and Experiment Testbed to Characterize Attitude Determination and Control System Performance

    Get PDF
    This paper describes the design, development, and construction of an attitude control testbed to investigate the performance of ADCS. The Testbed consists of three instruments, an air-bearing platform, a Helmholtz cage, and an AM0 spectrum solar simulator. The Testbed in this research features the capability to measure the mass properties of the tested satellite. One of the motivations of this paper is to share the experience while building this highly automated Testbed. Finally, the procedure of the mass properties measurement will be well described in this paper

    Center-surround vs. distance-independent lateral connectivity in the olfactory bulb

    Get PDF
    Lateral neuronal interactions are known to play important roles in sensory information processing. A center-on surround-off local circuit arrangement has been shown to play a role in mediating contrast enhancement in the visual, auditory, and somatosensory systems. The lateral connectivity and the influence of those connections have been less clear for the olfactory system. A critical question is whether the synaptic connections between the primary projection neurons, mitral and tufted (M/T) cells, and their main inhibitory interneurons, the granule cells (GCs), can support a center-surround motif. Here, we study this question by injecting a “center” in the glomerular layer of the olfactory bulb (OB) with a marker of synaptic connectivity, the pseudorabies virus (PRV), then examines the distribution of labeling in the “surround” of GCs. We use a novel method to score the degree to which the data fits a center-surround model vs. distance-independent connectivity. Data from 22 injections show that M/T cells generally form lateral connections with GCs in patterns that lie between the two extremes
    • 

    corecore