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ARTICLE

High-level cognition during story listening is
reflected in high-order dynamic correlations in
neural activity patterns
Lucy L. W. Owen 1, Thomas H. Chang1,2 & Jeremy R. Manning 1✉

Our thoughts arise from coordinated patterns of interactions between brain structures that

change with our ongoing experiences. High-order dynamic correlations in neural activity

patterns reflect different subgraphs of the brain’s functional connectome that display

homologous lower-level dynamic correlations. Here we test the hypothesis that high-level

cognition is reflected in high-order dynamic correlations in brain activity patterns. We

develop an approach to estimating high-order dynamic correlations in timeseries data, and

we apply the approach to neuroimaging data collected as human participants either listen to a

ten-minute story or listen to a temporally scrambled version of the story. We train across-

participant pattern classifiers to decode (in held-out data) when in the session each neural

activity snapshot was collected. We find that classifiers trained to decode from high-order

dynamic correlations yield the best performance on data collected as participants listened to

the (unscrambled) story. By contrast, classifiers trained to decode data from scrambled

versions of the story yielded the best performance when they were trained using first-order

dynamic correlations or non-correlational activity patterns. We suggest that as our thoughts

become more complex, they are reflected in higher-order patterns of dynamic network

interactions throughout the brain.
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A central goal in cognitive neuroscience is to elucidate the
neural code: i.e., the mapping between (a) mental states or
cognitive representations and (b) neural activity patterns.

One means of testing models of the neural code is to ask how
accurately that model is able to “translate” neural activity patterns
into known (or hypothesized) mental states or cognitive
representations1–9. Training decoding models on different types
of neural features (Fig. 1a) can also help to elucidate which
specific aspects of neural activity patterns are informative about
cognition and, by extension, which types of neural activity pat-
terns might compose the neural code. For example, prior work
has used region of interest analyses to estimate the anatomical
locations of specific neural representations10, or to compare the
relative contributions to the neural code of multivariate activity
patterns versus dynamic correlations between neural activity
patterns11,12. An emerging theme in this literature is that cog-
nition is mediated by dynamic interactions between brain
structures13–25.

Studies of the neural code to date have primarily focused on
univariate or multivariate neural patterns2, or (more recently) on
patterns of dynamic first-order correlations (i.e., interactions
between pairs of brain structures11,12,18,20–22). What might the
future of this line of work hold? For example, is the neural code
implemented through higher-order interactions between brain
structures26? Second-order correlations reflect homologous pat-
terns of correlation. In other words, if the dynamic patterns of
correlations between two regions, A and B, are similar to those
between two other regions, C and D, this would be reflected in the
second-order correlations between (A–B) and (C–D). In this way,
second-order correlations identify similarities and differences

between subgraphs of the brain’s connectome. Analogously,
third-order correlations reflect homologies between second-order
correlations– i.e., homologous patterns of homologous interac-
tions between brain regions. More generally, higher-order cor-
relations reflect homologies between patterns of lower-order
correlations. We can then ask: which “orders” of interaction are
most reflective of high-level cognitive processes?

One reason one might expect to see homologous networks in a
dataset is related to the notion that network dynamics reflect
ongoing neural computations or cognitive processing27. If the
nodes in two brain networks are interacting (within each net-
work) in similar ways then, according to our characterization of
network dynamics, we refer to the similarities between those
patterns of interaction as higher-order correlations. When higher-
order correlations are themselves changing over time, we can also
attempt to capture and characterize those high-order dynamics.

Another central question pertains to the extent to which the
neural code is carried by activity patterns that directly reflect
ongoing cognition1,2, versus the dynamic properties of the net-
work structure itself, independent of specific activity patterns in
any given set of regions16. For example, graph measures such as
centrality and degree28 may be used to estimate how a given brain
structure is “communicating” with other structures, indepen-
dently of the specific neural representations carried by those
structures. If one considers a brain region’s position in the net-
work (e.g., its eigenvector centrality) as a dynamic property, one
can compare how the positions of different regions are correlated,
and/or how those patterns of correlations change over time. We
can also compute higher-order patterns in these correlations to
characterize homologous subgraphs in the connectome that
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Fig. 1 Neural patterns. a A space of neural features. Within-brain analyses are carried out within a single brain, whereas across-brain analyses compare
neural patterns across two or more individuals' brains. Univariate analyses characterize the activities of individual units (e.g., nodes, small networks,
hierarchies of networks, etc.), whereas multivariate analyses characterize the patterns of activity across units. Order 0 patterns involve individual nodes;
order 1 patterns involve node-node interactions; order 2 (and higher) patterns relate to interactions between homologous networks. Each of these patterns
may be static (e.g., averaging over time) or dynamic. b Summarizing neural patterns. To efficiently compute with complex neural patterns, it can be useful
to characterize the patterns using summary measures. Dimensionality reduction algorithms project the patterns onto lower-dimensional spaces whose
dimensions reflect weighted combinations or nonlinear transformations of the dimensions in the original space. Graph measures characterize each unit’s
participation in its associated network.
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display similar changes in their constituent brain structures’
interactions with the rest of the brain.

To gain insights into the above aspects of the neural code, we
developed a computational framework for estimating dynamic
high-order correlations in timeseries data. This framework pro-
vides an important advance, in that it enables us to examine
patterns of higher-order correlations that are computationally
intractable to estimate via conventional methods. Given a mul-
tivariate timeseries, our framework provides timepoint-by-
timepoint estimates of the first-order correlations, second-order
correlations, and so on. Our approach combines a kernel-based
method for computing dynamic correlations in timeseries data
with a dimensionality reduction step (Fig. 1b) that projects the
resulting dynamic correlations into a low-dimensional space. We
explored two dimensionality reduction approaches: principle
components analysis29 (PCA), which preserves an approximately
invertible transformation back to the original data30–32, and a
second non-invertible algorithm for computing dynamic patterns
in eigenvector centrality33. This latter approach characterizes
correlations between each feature dimension’s relative position in
the network (at each moment in time) in favor of the specific
activity histories of different features26,34,35.

We validated our approach using synthetic data where the
underlying correlations were known. We then applied our fra-
mework to a neuroimaging dataset collected as participants lis-
tened to either an audio recording of a ten-minute story, listened
to a temporally scrambled version of the story, or underwent a
resting state scan36. Temporal scrambling has been used in a
growing number of studies, largely by Uri Hasson’s group, to
identify brain regions that are sensitive to higher-order and
longer-timescale information (e.g., cross-sensory integration, rich
narrative meaning, complex situations, etc.) versus regions that
are primarily sensitive to low-order (e.g., sensory) information.
For example,37 argues that when brain areas are sensitive to fine
versus coarse temporal scrambling, this indicates that they are
“higher order” in the sense that they process contextual infor-
mation pertaining to further-away timepoints. By contrast, low-
level regions, such as primary sensory cortices, do not mean-
ingfully change their responses (after correcting for presentation
order) even when the stimulus is scrambled at fine timescales.

We used a subset of the story listening and rest data to train
across-participant classifiers to decode listening times (of groups
of participants) using a blend of neural features (comprising
neural activity patterns, as well as different orders of dynamic
correlations between those patterns that were inferred using our
computational framework). We found that both the PCA-based
and eigenvector centrality-based approaches yielded neural pat-
terns that could be used to decode accurately (i.e., well above
chance). Both approaches also yielded the best decoding accuracy
for data collected during (intact) story listening when high-order
(PCA: second-order; eigenvector centrality: fourth-order)
dynamic correlation patterns were included as features. When we
trained classifiers on the scrambled stories or resting state data,
only (relatively) lower-order dynamic patterns were informative
to the decoders. Taken together, our results indicate that high-
level cognition is supported by high-order dynamic patterns of
communication between brain structures.

Results
We sought to understand whether high-level cognition is reflected
in dynamic patterns of high-order correlations. To that end, we
developed a computational framework for estimating the
dynamics of stimulus-driven high-order correlations in multi-
variate timeseries data (see Dynamic inter-subject functional
connectivity (DISFC) and Dynamic higher-order correlations).

We evaluated the efficacy of this framework at recovering known
patterns in several synthetic datasets (see Synthetic data: simu-
lating dynamic first-order correlations and Synthetic data:
simulating dynamic higher-order correlations). We then applied
the framework to a public fMRI dataset collected as participants
listened to an auditorily presented story, listened to a temporally
scrambled version of the story, or underwent a resting state scan
(see Functional neuroimaging data collected during story listen-
ing). We used the relative decoding accuracies of classifiers
trained on different sets of neural features to estimate which types
of features reflected ongoing cognitive processing.

Recovering known dynamic first-order correlations. We gen-
erated synthetic datasets that differed in how the underlying first-
order correlations changed over time. For each dataset, we
applied Eq. (4) with a variety of kernel shapes and widths. We
assessed how well the true underlying correlations at each time-
point matched the recovered correlations (Fig. 2). For every
kernel and dataset we tested, our approach recovered the corre-
lation dynamics we embedded into the data. However, the quality
of these recoveries varied across different synthetic datasets in a
kernel-dependent way.

In general, wide monotonic kernel shapes (Laplace, Gaussian),
and wider kernels (within a shape), performed best when the
correlations varied gradually from moment-to-moment (Fig. 2a,
c, d). In the extreme, as the rate of change in correlations
approaches 0 (Fig. 2a), an infinitely wide kernel would exactly
recover the Pearson’s correlation (e.g., compare Eqs. (1) and (4)).

When the correlation dynamics were unstructured in time
(Fig. 2b), a Dirac δ kernel (infinitely narrow) performed best. This
is because, when every timepoint’s correlations are independent
of the correlations at every other timepoint, averaging data over
time dilutes the available signal. Following a similar pattern,
holding kernel shape fixed, narrower kernel parameters better
recovered randomly varying correlations.

Recovering known dynamic higher-order correlations. Fol-
lowing our approach to evaluating our ability to recover known
dynamic first-order correlations from synthetic data, we gener-
ated an analogous second set of synthetic datasets that we
designed to exhibit known dynamic first-order and second-order
correlations (see Synthetic data: simulating dynamic higher-order
correlations). We generated a total of 400 datasets (100 datasets
for each category) that varied in how the first-order and second-
order correlations changed over time. We then repeatedly applied
Eq. (4) using the overall best-performing kernel from our first-
order tests (a Laplace kernel with a width of 20; Fig. 2) to assess
how closely the recovered dynamic correlations matched the
dynamic correlations we had embedded into the datasets.

Overall, we found that we could reliably recover both first-
order and second-order correlations from the synthetic data
(Fig. 3). When the correlations were stable for longer intervals, or
changed gradually (constant, ramping, and event datasets),
recovery performance was relatively high, and we were better
able to recover dynamic first-order correlations than second-
order correlations. This is because errors in our estimation
procedure at lower orders necessarily propagate to higher orders
(since lower-order correlations are used to estimate higher-order
correlations). Conversely, when the correlations were particularly
unstable (random datasets), we better recovered second-order
correlations. This is because noise in our data generation
procedure propagates from higher orders to lower orders (see
Synthetic data: simulating dynamic high-order correlations).

We also examined the impact of the data duration (Fig. S3) and
complexity (number of zero-order features; Fig. S4) on our ability
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to accurately recover ground truth first-order and second-order
dynamic correlations. In general, we found that our approach
better recovers ground truth dynamic correlations from longer
duration timeseries data. We also found that our approach tends
to best recover data generated using fewer zero-order features
(i.e., lower complexity), although this tendency was not strictly

monotonic. Further, because our data generation procedure
requires OðK4Þ memory to generate a second-order timeseries
with K zero-order features, we were not able to fully explore how
the number of zero-order features affects recovery accuracy as the
number of features gets larger (e.g., as it approaches the number
of features present in the fMRI data we examine below). Although

Fig. 2 Recovering known dynamic first-order correlations from synthetic data. Each panel displays the average correlations between the vectorized upper
triangles of the recovered correlation matrix at each timepoint and either the true underlying correlation at each timepoint or a reference correlation matrix
(the averages are taken across 100 different randomly generated synthetic datasets of each given category, each with K= 50 features and T= 300
timepoints). Error ribbons denote 95% confidence intervals of the mean (taken across datasets). Different colors denote different kernel shapes, and the
shading within each color family denotes the kernel width parameter. For a complete description of each synthetic dataset, see Synthetic data: simulating
dynamic first-order correlations. a Constant correlations. These datasets have a stable (unchanging) underlying correlation matrix. b Random correlations.
These datasets are generated using a new independently drawn correlation matrix at each new timepoint. c Ramping correlations. These datasets are
generated by smoothly varying the underlying correlations between the randomly drawn correlation matrices at the first and last timepoints. The left panel
displays the correlations between the recovered dynamic correlations and the underlying ground truth correlations. The middle panel compares the
recovered correlations with the first timepoint’s correlation matrix. The right panel compares the recovered correlations with the last timepoint’s
correlation matrix. d Event-based correlations. These datasets are each generated using five randomly drawn correlation matrices that each remain stable
for a fifth of the total timecourse. The left panel displays the correlations between the recovered dynamic correlations and the underlying ground truth
correlations. The right panels compare the recovered correlations with the correlation matrices unique to each event. The vertical lines denote event
boundaries. Source data are provided as a Source Data file.

Fig. 3 Recovery of simulated first-order and second-order dynamic correlations. Each panel displays the average correlations between the vectorized
upper triangles of the recovered first-order and second-order correlation matrices and the true (simulated) first-order and second-order correlation
matrices at each timepoint and for each synthetic dataset. (The averages are taken across 100 different randomly generated synthetic datasets of each
given category, each with K= 10 features and T= 300 timepoints.) Error ribbons denote 95% confidence intervals of the mean (taken across datasets).
For a complete description of each synthetic dataset, see synthetic data: simulating dynamic higher-order correlations. All estimates represented in this
figure were computed using a Laplace kernel (width= 20). Constant. These datasets have stable (unchanging) underlying second-order correlation
matrices. Random. These datasets are generated using a new independently drawn second-order correlation matrix at each timepoint. Ramping. These
datasets are generated by smoothly varying the underlying second-order correlations between the randomly drawn correlation matrices at the first and last
timepoints. Event. These datasets are each generated using five randomly drawn second-order correlation matrices that each remain stable for a fifth of the
total timecourse. The vertical lines denote event boundaries. Note that the “dips” and “ramps” at the boundaries of sharp transitions (e.g., the beginning
and ends of the “constant” and “ramping” datasets, and at the event boundaries of the “event” datasets) are finite-sample effects that reflect the reduced
numbers of samples that may be used to accurately estimate correlations at sharp boundaries. Source data are provided as a Source Data file.
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we were not able to formally test this to our satisfaction, we
expect that accurately estimating dynamic high-order correlations
would require data with many more zero-order features than we
were able to simulate. Our reasoning is that high-order
correlations necessarily involve larger numbers of lower-order
features, so achieving adequate “resolution” high-order timeseries
might require many low-order features.

Taken together, our explorations using synthetic data indicated
that we are able to partially, but not perfectly, recover ground
truth dynamic first-order and second-order correlations. This
suggests that our modeling approach provides a meaningful (if
noisy) estimate of high-order correlations. We next turned to
analyses of human fMRI data to examine whether the recovered
dynamics might reflect the dynamics of human cognition during
a naturalistic story-listening task.

Cognitively relevant dynamic high-order correlations in fMRI
data. We used across-participant temporal decoders to identify
cognitively relevant neural patterns in fMRI data (see Forward
inference and decoding accuracy). The dataset we examined36

comprised four experimental conditions that exposed participants
to stimuli that varied systematically in how cognitively engaging
they were. The intact experimental condition (intact) had parti-
cipants listen to an audio recording of a 10-min story. The
paragraph-scrambled experimental condition (paragraph) had
participants listen to a temporally scrambled version of the story,
where the paragraphs occurred out of order (but where the same
total set of paragraphs were presented over the full listening
interval). All participants in this condition experienced the
scrambled paragraphs in the same order. The word-scrambled
experimental condition (word) had participants listen to a tem-
porally scrambled version of the story where the words in the
story occurred in a random order. All participants in the word
condition experienced the scrambled words in the same order.
Finally, in a rest experimental condition (rest), participants lay in
the scanner with no overt stimulus, with their eyes open (blinking
as needed). This public dataset provided a convenient means of
testing our hypothesis that different levels of cognitive processing
and engagement are reflected in different orders of brain activity
dynamics.

In brief, we computed timeseries of dynamic high-order
correlations that were similar across participants in each of two
randomly assigned groups: a training group and a test group. We
then trained classifiers on the training group’s data to match each
sample from the test group with a stimulus timepoint. Each
classifier comprised a weighted blend of neural patterns that
reflected up to nth-order dynamic correlations (see Feature
weighting and testing). We repeated this process for
n 2 0; 1; 2; :::; 10f g. Our examinations of synthetic data suggested
that none of the kernels we examined were “universal” in the
sense of optimally recovering underlying correlations regardless
of the temporal structure of those correlations. We found a
similar pattern in the (real) fMRI data, whereby different kernels
yielded different decoding accuracies, but no single kernel
emerged as the clear “best.” In our analyses of neural data, we
therefore averaged our decoding results over a variety of kernel
shapes and widths in order to identify results that were robust to
specific kernel parameters (see Identifying robust decoding
results).

Our approach to estimating dynamic high-order correlations
entails mapping the high-dimensional feature space of correla-
tions (represented by a T by OðK2Þ matrix) onto a lower-
dimensional feature space (represented by a T by K matrix). We
carried out two sets of analyses that differed in how this mapping
was computed. The first set of analyses used PCA to find a low-

dimensional embedding of the original dynamic correlation
matrices (Fig. 4a, b). The second set of analyses characterized
correlations in dynamics of each feature’s eigenvector centrality,
but did not preserve the underlying activity dynamics (Fig. 4c, d).

Both sets of temporal decoding analyses yielded qualitatively
similar results for the auditory (non-rest) conditions of the
experiment (Fig. 4: pink, green, and teal lines; Fig. 5: three
leftmost columns). The highest decoding accuracy for partici-
pants who listened to the intact (unscrambled) story was achieved
using high-order dynamic correlations (PCA: second-order;
eigenvector centrality: fourth-order). Scrambled versions of the
story were best decoded by lower-order correlations (PCA/
paragraph: first-order; PCA/word: order zero; eigenvector
centrality/paragraph: order zero; and eigenvector centrality/word:
order zero). The two sets of analyses yielded different decoding
results on resting state data (Fig. 4: purple lines; Fig. 5: rightmost
column). We note that, while the resting state times could be
decoded reliably, the accuracies were only very slightly above
chance. We speculate that the decoders might have picked up on
attentional drift, boredom, or tiredness; we hypothesize that these
all increased throughout the resting state scan. The decoders
might be picking up on aspects of these loosely defined cognitive
states that are common across individuals. The PCA-based
approach achieved the highest resting state decoding accuracy
using order zero features (non-correlational, activation-based),
whereas the eigenvector centrality-based approach achieved the
highest resting state decoding accuracy using second-order
correlations. Taken together, these analyses indicate that high-
level cognitive processing (while listening to the intact story) is
reflected in the dynamics of high-order correlations in brain
activity, whereas lower-level cognitive processing (while listening
to scrambled versions of the story that lack rich meaning) is
reflected in the dynamics of lower-order correlations and non-
correlational activity dynamics. Further, these patterns are
associated both with the underlying activity patterns (character-
ized using PCA) and also with the changing relative positions that
different brain areas occupy in their associated networks
(characterized using eigenvector centrality).

Having established that patterns of high-order correlations are
informative to decoders, we next wondered which specific
networks of brain regions contributed most to these patterns.
As a representative example, we selected the kernel parameters
that yielded decoding accuracies that were the most strongly
correlated (across conditions and orders) with the average
accuracies across all of the kernel parameters we examined.
Using Fig. 4c as a template, the best-matching kernel was a
Laplace kernel with a width of 50 (see Kernel-based approach for
computing dynamic correlations and Fig. S9). We used this kernel
to compute a single K by Knth-order DISFC matrix for each
experimental condition. We then used Neurosynth38 to compute
the terms most highly associated with the most strongly
correlated pairs of regions in each of these matrices (Fig. 6; see
Reverse inference).

For all of the story listening conditions (intact, paragraph, and
word; top three rows of Fig. 6), we found that first- and second-
order correlations were most strongly associated with auditory
and speech processing areas. During intact story listening, third-
order correlations reflected integration with visual areas, and
fourth-order correlations reflected integration with areas asso-
ciated with high-level cognition and cognitive control, such as the
ventrolateral prefrontal cortex. However, when participants
listened to temporally scrambled stories, these higher-order
correlations instead involved interactions with additional regions
associated with speech and semantic processing (second and third
rows of Fig. 6). By contrast, we found a much different set of
patterns in the resting state data (Fig. 6, bottom row). First-order
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resting state correlations were most strongly associated with
regions involved in counting and numerical understanding.
Second-order resting state correlations were strongest in visual
areas; third-order correlations were strongest in task-positive
areas; and fourth-order correlations were strongest in regions
associated with autobiographical and episodic memory. We
carried out analogous analyses to create maps (and decode the
top associated Neurosynth terms) for up to 15th-order correla-
tions (Figs. S5–S8). Of note, examining 15th-order correlations
between 700 nodes using conventional methods would have
required storing roughly 7002´ 15

2 � 1:13´ 1085 floating point
numbers– assuming single-precision (32 bits each), this would
require roughly 32 times as many bits as there are molecules in
the known universe! Although these 15th-order correlations do
appear (visually) to have some well-formed structure, we provide
this latter example primarily as a demonstration of the efficiency
and scalability of our approach.

Discussion
We tested the hypothesis that high-level cognition is reflected in
high-order brain network dynamics19,26. We examined high-
order network dynamics in functional neuroimaging data col-
lected during a story listening experiment. When participants
listened to an auditory recording of the story, participants
exhibited similar high-order brain network dynamics. By con-
trast, when participants instead listened to temporally scrambled
recordings of the story, only lower-order brain network dynamics
were similar across participants. Our results indicate that higher
orders of network interactions support higher-level aspects of
cognitive processing (Fig. 7).

The notion that cognition is reflected in (and possibly
mediated by) patterns of first-order network dynamics has
been suggested by or proposed in myriad empirical studies and
reviews11,12,17,18,20–22,24,25,32,39–42. Our study extends this line
of work by finding cognitively relevant higher-order network
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Fig. 4 Across-participant timepoint decoding accuracy varies with correlation order and cognitive engagement. a Decoding accuracy as a function of
order: PCA. “Order'' (x-axis) refers to the maximum order of dynamic correlations that were available to the classifiers (see Feature weighting and testing).
The reported across-participant decoding accuracies are averaged over all kernel shapes and widths (see Identifying robust decoding results). The y-values
are displayed relative to chance accuracy (intact: 1

300; paragraph:
1

272; word:
1

300; rest:
1

400; these chance accuracies were subtracted from the observed
accuracies to obtain the relative accuracies reported on the y-axis). The error ribbons denote 95% confidence intervals of the means across cross-
validation folds (i.e., random assignments of participants to the training and test sets). The colors denote the experimental condition. Arrows denote sets of
features that yielded reliably higher (upward facing) or lower (downward facing) decoding accuracy than the mean of all other features (via a two-tailed t-
test, thresholded at p < 0.05). Figure 5 displays additional comparisons between the decoding accuracies achieved using different sets of neural features.
The circled values represent the maximum decoding accuracy within each experimental condition. b Normalized timepoint decoding accuracy as a function
of order: PCA. This panel displays the same results as Panel a, but here each curve has been normalized to have a maximum value of 1 and a minimum
value of 0 (including the upper and lower bounds of the respective 95% confidence intervals of the mean). Panels a and b used PCA to project each high-
dimensional pattern of dynamic correlations onto a lower-dimensional space. c Timepoint decoding accuracy as a function of order: eigenvector centrality.
This panel is in the same format as Panel a, but here eigenvector centrality has been used to project the high-dimensional patterns of dynamic correlations
onto a lower-dimensional space. d Normalized timepoint decoding accuracy as a function of order: eigenvector centrality. This panel is in the same format
as Panel b, but here eigenvector centrality has been used to project the high-dimensional patterns of dynamic correlations onto a lower-dimensional space.
See Figs. S1 and S2 for decoding results broken down by kernel shape and width, respectively. Source data are provided as a Source Data file.
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Fig. 5 Statistical summary of decoding accuracies for different neural features. Each column of matrices displays decoding results for one experimental
condition (intact, paragraph, word, and rest). We considered dynamic activity patterns (order 0) and dynamic correlations at different orders (order > 0).
We used two-tailed t-tests to compare the distributions of decoding accuracies obtained using each pair of features. The distributions for each feature
reflect the set of average decoding accuracies (across all kernel parameters), obtained for each random assignment of training and test groups. In the upper
triangles of each matrix, warmer colors (positive t-values) indicate that the neural feature indicated in the given row yielded higher accuracy than the
feature indicated in the given column. Cooler colors (negative t-values) indicate that the feature in the given row yielded lower decoding accuracy than the
feature in the given column. The lower triangles of each map denote the corresponding p-values for the t-tests. The diagonal entries display the relative
average optimized weight given to each type of feature in a decoder that included all feature types (see Feature weighting and testing). Source data are
provided as a Source Data file.

In
ta

ct
Pa

ra
gr

ap
h

W
or

d
Re

st

Order 1 Order 2 Order 3 Order 4

voice
speech

superior temporal
listening

temporal gyrus

sounds
auditory cortex

listening
auditory
listened

listening
speech
voice

sounds
speech perception

cortex parietal
intraparietal

parietal cortex
ips

posterior parietal

voice
precuneus
temporal
speaker

temporal gyrus

voice
sounds
listened
listening

auditory cortex

voice
temporal gyrus

sounds
listening
speech

occipital
visual

extrastriate
vision

occipital cortex

cuneus
v1

visual
early visual

primary visual

auditory cortex
sound
sounds

auditory 
heschl gyrus

temporal gyrus
voice

superior temporal
temporal sulcus

speaker

parietal

task
visual cortex

working memory

anterior insula
insula inferior
inferior frontal

insula
executive

gyri
temporo

posterior temporal
posterior middle
temporo parietal

anterior temporal
expression

lateral temporal
temporal lobes

lobes

default
autobiographical

default mode
posterior cingulate
anterior temporal

Fig. 6 Top terms associated with the most strongly correlated nodes at each order. Each color corresponds to one order of inter-subject functional
correlations. To calculate the dynamic correlations, eigenvector centrality has been used to project the high-dimensional patterns of dynamic correlations
onto a lower-dimensional space at each previous order, which allows us to map the brain regions at each order by retaining the features of the original
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and projected onto the cortical surface91. The lists of terms on the right display the top five Neurosynth terms38 decoded from the corresponding brain
maps for each order. Each row displays data from a different experimental condition. Additional maps and their corresponding Neurosynth terms may be
found in the Supplementary materials (intact: Fig. S5; paragraph: Fig. S6; word: Fig. S7; rest: Fig. S8). Source data are provided as a Source Data file.
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dynamics that reflect ongoing cognition. Our findings also
complement other work that uses graph theory and topology to
characterize how brain networks reconfigure during
cognition16,26,30,31,34,35,43.

An open question not addressed by our study pertains to how
different structures integrate incoming information with different
time constants. For example, one line of work suggests that the
cortical surface comprises a structured map such that nearby brain
structures process incoming information at similar timescales. Low-
level sensory areas integrate information relatively quickly, whereas
higher-level regions integrate information relatively slowly37,44–49.
A similar hierarchy appears to play a role in predicting future
events50. Other related work in human and mouse brains indicates
that the temporal response profile of a given brain structure may
relate to how strongly connected that structure is with other brain
areas51. Further study is needed to understand the role of temporal
integration at different scales of network interaction, and across
different anatomical structures. Importantly, our analyses do not
speak to the physiological basis of higher-order dynamics, and
could reflect nonlinearities, chaotic patterns, non-stationarities, and/

or multistability, etc. However, our decoding analyses do indicate
that higher-order dynamics are consistent across individuals, and
therefore unlikely to reflect non-stimulus-driven dynamics that are
unlikely to be similar across individuals.

One limitation of our approach relates to how noise propagates
in our estimation procedure. Specifically, our procedure for esti-
mating high-order dynamic correlations depends on estimates of
lower-order dynamic correlations. This means that our measures of
which higher-order patterns are reliable and stable across experi-
mental conditions are partially confounded with the stability of
lower-order patterns. Prior work suggests that the stability of what
we refer to here as first-order dynamics likely varies across the
experimental conditions we examined36. Therefore a caveat to our
claim that richer stimuli evoke more stable higher-order dynamics
is that our approach assumes that those high-order dynamics reflect
relations or interactions between lower-order features.

Another potential limitation of our approach relates to recent
work suggesting that the brain undergoes rapid state changes, for
example across event boundaries44,52. used hidden semi-Markov
models to estimate state-specific network dynamics53. Our gen-
eral approach might be extended by considering putative state
transitions. For example, rather than weighting all timepoints
using a similar kernel (Eq. (4)), the kernel function could adapt
on a timepoint-by-timepoint basis such that only timepoints
determined to be in the same “state” were given non-zero weight.

Identifying high-order network dynamics associated with high-
level cognition required several important methods advances. First,
we used kernel-based dynamic correlations to extend the notion of
(static) inter-subject functional connectivity36 to a DISFC that does
not rely on sliding windows11, and that may be computed at indi-
vidual timepoints. This allowed us to precisely characterize stimulus-
evoked network dynamics that were similar across individuals. Sec-
ond, we developed a computational framework for efficiently and
scalably estimating high-order dynamic correlations. Our approach
uses dimensionality reduction algorithms and graph measures to
obtain low-dimensional embeddings of patterns of network
dynamics. Third, we developed an analysis framework for identifying
robust decoding results by carrying out our analyses using a range of
parameter values and identifying which results were robust to specific
parameter choices. By showing that high-level cognition is reflected
in high-order network dynamics, we have elucidated the next step on
the path towards understanding the neural basis of cognition.

Methods
Our general approach to efficiently estimating high-order dynamic correlations com-
prises four general steps (Fig. 8). First, we derive a kernel-based approach to computing

Order
1 2 3 4

Fu
nc

tio
n

Ta
sk

se
ns

iti
vi

ty

Low-level
auditory

processing

Speech
processing

Cross-modality
sensory

integration

High-level
cognition and

cognitive control

Story listening (intact)

Coarsly scrambled story (paragraph)

Finely scrambled story (word)

Fig. 7 Proposed high-order network dynamics underlying high-level cognition during story listening. Schematic depicts higher orders of network
interactions supporting higher-level aspects of cognitive processing. When tasks evoke richer, deeper, and/or higher-level processing, this is reflected in
higher-order network interactions.

Fig. 8 Estimating dynamic high-order correlations. Given a T by Kmatrix of
multivariate timeseries data, Xn (where n 2 N; n � 0), we use Eq. (4) to
compute a timeseries of K by K correlation matrices, Yn+1. We then
approximate Yn+1 with the T by K matrix, Xn+1. This process may be repeated
to scalably estimate iteratively higher-order correlations in the data. Note that
the transposes of Xn and Xn+1 are displayed in the figure for compactness.
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dynamic pairwise correlations in a T (timepoints) by K (features) multivariate timeseries,
X0. This yields a T by OðK2Þ matrix of dynamic correlations, Y1, where each row
comprises the upper triangle and diagonal of the correlation matrix at a single timepoint,
reshaped into a row vector (this reshaped vector is K2�K

2 þ K
� �

-dimensional). Second,
we apply a dimensionality reduction step to project the matrix of dynamic correlations
back onto a K-dimensional space. This yields a T by K matrix, X1, that reflects an
approximation of the dynamic correlations reflected in the original data. Third, we use
repeated applications of the kernel-based dynamic correlation step to Xn and the
dimensionality reduction step to the resulting Yn+1 to estimate high-order dynamic
correlations. Each application of these steps to a T by K timeseries Xn yields a T by K
matrix, Xn+1, that reflects the dynamic correlations between the columns of Xn. In this
way, we refer to n as the order of the timeseries, where X0 (order 0) denotes the original
data and Xn denotes (approximated) nth-order dynamic correlations between the col-
umns of X0. Finally, we use a cross-validation-based decoding approach to evaluate how
well information contained in a given order (or weighted mixture of orders) may be
used to decode relevant cognitive states. If including a given Xn in the feature set yields
higher classification accuracy on held-out data, we interpret this as evidence that the
given cognitive states are reflected in patterns of nth-order correlations.

All of the code used to produce the figures and results in this manuscript, along
with links to the corresponding datasets, may be found at github.com/ContextLab/
timecorr-paper. In addition, we have released a Python toolbox for computing
dynamic high-order correlations in timeseries data; our toolbox may be found at
timecorr.readthedocs.io.

Kernel-based approach for computing dynamic correlations. Given a T by K
matrix of observations, X, we can compute the (static) Pearson’s correlation
between any pair of columns, X(⋅,i) and X(⋅,j) using29:

corrðXð�; iÞ;Xð�; jÞÞ ¼ ∑T
t¼1 Xðt; iÞ � �Xð�; iÞ� �

Xðt; jÞ � �Xð�; jÞ� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑T

t¼1 σ
2
Xð�;iÞσ

2
Xð�;jÞ

q ; where ð1Þ

�Xð�; kÞ ¼ 1
T
∑
T

t¼1
Xðt; kÞ; and ð2Þ

σ2Xð�;kÞ ¼
1
T
∑
T

t¼1
Xðt; kÞ � �Xð�; kÞ� �2 ð3Þ

We can generalize this formula to compute time-varying correlations by incor-
porating a kernel function that takes a time t as input, and returns how much the
observed data at each timepoint τ 2 �1;1½ � contributes to the estimated
instantaneous correlation54 at time t (Fig. 9).

Given a kernel function κt(⋅) for timepoint t, evaluated at timepoints
τ 2 1; :::;T½ �, we can update the static correlation formula in Eq. (1) to estimate the
instantaneous correlation at timepoint t:

timecorrκt Xð�; iÞ;Xð�; jÞ� � ¼
∑T

τ¼1 Xðτ; iÞ � eXκt
ð�; iÞ

� �
Xðτ; jÞ � eXκt

ð�; jÞ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑T

τ¼1 eσ
2
κt
ðXð�; iÞÞeσ2κt ðXð�; jÞÞ

q ; where

ð4Þ

eXκt
ð�; kÞ ¼ ∑

T

τ¼1
κtðτÞXðτ; kÞ; ð5Þ

eσ2κt ðXð�; kÞÞ ¼ ∑
T

τ¼1
Xðτ; kÞ � eXκt

ð�; kÞ
� �2

: ð6Þ

Here timecorrκt ðXð�; iÞ;Xð�; jÞÞ reflects the correlation at time t between columns i
and j of X, estimated using the kernel κt. We evaluate Eq. (4) in turn for each pair

of columns in X and for kernels centered on each timepoint in the timeseries,
respectively, to obtain a T by K by K timeseries of dynamic correlations, Y. For
convenience, we then reshape the upper triangles and diagonals of each timepoint’s
symmetric correlation matrix into a row vector to obtain an equivalent T by
K2�K

2 þ K
� �

matrix.

Dynamic inter-subject functional connectivity. Equation (4) provides a means of
taking a single observation matrix, Xn and estimating the dynamic correlations
from moment to moment, Yn+1. Suppose that one has access to a set of multiple
observation matrices that reflect the same phenomenon. For example, one might
collect neuroimaging data from several experimental participants, as each parti-
cipant performs the same task (or sequence of tasks). Let X1

n , X
2
n , ..., X

P
n reflect the T

by K observation matrices (n= 0) or reduced correlation matrices (n > 0) for each
of P participants in an experiment. We can use inter-subject functional
connectivity36,55 (ISFC) to compute the stimulus-driven correlations reflected in
the multi-participant dataset at a given timepoint t using:

�CðtÞ ¼ M R
1
2P

∑
P

p¼1
Z Yp

nþ1ðtÞ
� �> þ Z Yp

nþ1ðtÞ
� �� �� �

; ð7Þ

where M extracts and vectorizes the upper triangle and diagonal of a symmetric
matrix, Z is the Fisher z-transformation56:

ZðrÞ ¼ log ð1þ rÞ � log ð1� rÞ
2

; ð8Þ

R is the inverse of Z:

RðzÞ ¼ expð2z � 1Þ
expð2z þ 1Þ ; ð9Þ

and Yp
nþ1ðtÞ denotes the correlation matrix at timepoint t (Eqn. (4)) between each

column of Xp
n and each column of the average Xn from all other participants, �Xnp

n :

�Xnp
n ¼ 1

P � 1
∑
q2np

Xq
n; ð10Þ

where \p denotes the set of all participants other than participant p. In this way, the
T by K2�K

2 þ K
� �

DISFC matrix �C provides a time-varying extension of the ISFC
approach developed by36.

Low-dimensional representations of dynamic correlations. Given a T by
K2�K

2 þ K
� �

matrix of nth-order dynamic correlations, Yn, we propose two general
approaches to computing a T by K low-dimensional representation of those cor-
relations, Xn. The first approach uses dimensionality reduction algorithms to
project Yn onto a K-dimensional space. The second approach uses graph measures
to characterize the relative positions of each feature (k 2 1; :::;K½ �) in the network
defined by the correlation matrix at each timepoint.

Dimensionality reduction-based approaches to computing Xn. The modern toolkit of
dimensionality reduction algorithms include Principal Components Analysis29

(PCA), Probabilistic PCA57 (PPCA), Exploratory Factor Analysis58 (EFA), Inde-
pendent Components Analysis59,60 (ICA), t-Stochastic Neighbor Embedding61 (t-
SNE), Uniform Manifold Approximation and Projection62 (UMAP), non-negative
matrix factorization63 (NMF), Topographic Factor Analysis64 (TFA), Hierarchical
Topographic Factor analysis11 (HTFA), Topographic Latent Source Analysis65

(TLSA), dictionary learning66,67, and deep auto-encoders68, among others. While
complete characterizations of each of these algorithms is beyond the scope of the
present manuscript, the general intuition driving these approaches is to compute
the T by K matrix, X, that is closest to the original T by J matrix, Y, where
(typically) K≪ J. The different approaches place different constraints on what

Fig. 9 Examples of kernel functions. Each panel displays per-timepoint weights for a kernel centered at t= 50, evaluated at 100 timepoints
(τ 2 1; :::; 100½ �). a Uniform kernel. The weights are timepoint-invariant; observations at all timepoints are weighted equally, and do not change as a
function of τ. This is a special case kernel function that reduces dynamic correlations to static correlations. b Dirac δ kernel. Only the observation at
timepoint t is given a non-zero weight (of 1). c Gaussian kernels. Each kernel’s weights fall off in time according to a Gaussian probability density function
centered on time t. Weights derived using several different example width parameters (σ2) are displayed. d Laplace kernels. Each kernel’s weights fall off in
time according to a Laplace probability density function centered on time t. Weights derived using several different example width parameters (b) are
displayed. e Mexican hat (Ricker wavelet) kernels. Each kernel’s weights fall off in time according to a Ricker wavelet centered on time t. This function
highlights the contrasts between local versus surrounding activity patterns in estimating dynamic correlations. Weights derived using several different
example width parameters (σ) are displayed.
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properties X must satisfy and which aspects of the data are compared (and how) in
order to optimize how well X approximates Y.

Applying dimensionality reduction algorithms to Y yields an X whose columns
reflect weighted combinations (or nonlinear transformations) of the original
columns of Y. This has two main consequences. First, with each repeated
dimensionality reduction, the resulting Xn has lower and lower fidelity (with
respect to what the “true” Yn might have looked like without using dimensionality
reduction to maintain tractability). In other words, computing Xn is a lossy
operation. Second, whereas each column of Yn may be mapped directly onto
specific pairs of columns of Xn−1, the columns of Xn reflect weighted combinations
and/or nonlinear transformations of the columns of Yn. Many dimensionality
reduction algorithms are invertible (or approximately invertible). However,
attempting to map a given Xn back onto the original feature space of X0 will usually
require OðTK2n Þ space and therefore becomes intractable as n or K grow large.

Graph measure approaches to computing Xn. The above dimensionality reduction
approaches to approximating a given Yn with a lower-dimensional Xn preserve a
(potentially recombined and transformed) mapping back to the original data in X0.
We also explore graph measures that instead characterize each feature’s relative
position in the broader network of interactions and connections. To illustrate the
distinction between the two general approaches we explore, suppose a network
comprises nodes A and B, along with several other nodes. If A and B exhibit
uncorrelated activity patterns, then by definition the functional connection (cor-
relation) between them will be close to 0. However, if A and B each interact with
other nodes in similar ways, we might attempt to capture those similarities between
A’s and B’s interactions with those other members of the network.

In general, graph measures take as input a matrix of interactions (e.g., using the
above notation, a K by K correlation matrix or binarized correlation matrix
reconstituted from a single timepoint’s row of Y), and return as output a set of K
measures describing how each node (feature) sits within that correlation matrix
with respect to the rest of the population. Widely used measures include
betweenness centrality (the proportion of shortest paths between each pair of nodes
in the population that involves the given node in question69–73); diversity and
dissimilarity (characterizations of how differently connected a given node is from
others in the population74–76); eigenvector centrality and pagerank centrality
(measures of how influential a given node is within the broader network77–80);
transfer entropy and flow coefficients (a measure of how much information is
flowing from a given node to other nodes in the network81,82); k-coreness centrality
(a measure of the connectivity of a node within its local subgraph83,84); within-
module degree (a measure of how many connections a node has to its close
neighbors in the network85); participation coefficient (a measure of the diversity of
a node’s connections to different subgraphs in the network85); and subgraph
centrality (a measure of a node’s participation in all of the network’s subgraphs86);
among others.

For a given graph measure, η : RK ´K ! RK , we can use η to tranform each
row of Yn in a way that characterizes the corresponding graph properties of each
column. This results in a new T by K matrix, Xn, that reflects how the features
reflected in the columns of Xn−1 participate in the network during each
timepoint (row).

Dynamic higher-order correlations. Because Xn has the same shape as the ori-
ginal data X0, approximating Yn with a lower-dimensional Xn enables us to esti-
mate high-order dynamic correlations in a scalable way. Given a T by K input
matrix, the output of Eq. (4) requires OðTK2Þ space to store. Repeated applications
of Eq. (4) (i.e., computing dynamic correlations between the columns of the out-
putted dynamic correlation matrix) each require exponentially more space; in
general the nth-order dynamic correlations of a T by K timeseries occupies
OðTK2n Þ space. However, when we approximate or summarize the output of Eq.
(4) with a T by K matrix (as described above), it becomes feasible to compute even
very high-order correlations in high-dimensional data. Specifically, approximating
the nth-order dynamic correlations of a T by K timeseries requires only OðTK2Þ
additional space– the same as would be required to compute first-order dynamic
correlations. In other words, the space required to store n+ 1 multivariate time-
series reflecting up to nth order correlations in the original data scales linearly with
n using our approach (Fig. 8).

Data. We examined two types of data: synthetic data and human functional
neuroimaging data. We constructed and leveraged the synthetic data to evaluate
our general approach87. Specifically, we tested how well Eq. (4) could be used to
recover known dynamic correlations using different choices of kernel (κ; Fig. 9), for
each of several synthetic datasets that exhibited different temporal properties. We
also simulated higher-order correlations and tested how well Eq. (4) could recover
these correlations using the best kernel from the previous synthetic data analyses.
We then applied our approach to a functional neuroimaging dataset to test the
hypothesis that ongoing cognitive processing is reflected in high-order dynamic
correlations. We used an across-participant classification test to estimate whether
dynamic correlations of different orders contain information about which time-
point in a story participants were listening to.

Synthetic data: simulating dynamic first-order correlations. We constructed a total
of 400 different multivariate timeseries, collectively reflecting a total of four qua-
litatively different patterns of dynamic first-order correlations (i.e., 100 datasets
reflecting each type of dynamic pattern). Each timeseries comprised 50 features
(dimensions) that varied over 300 timepoints. The observations at each timepoint
were drawn from a zero-mean multivariate Gaussian distribution with a covariance
matrix defined for each timepoint as described below. We drew the observations at
each timepoint independently from the draws at all other timepoints; in other
words, for each observation st � N 0;Σt

� �
at timepoint t, p(st)= p(st∣s\t).

Constant: we generated data with stable underlying correlations to evaluate how
Eq. (4) characterized correlation “dynamics” when the ground truth correlations
were static. We constructed 100 multivariate timeseries whose observations were
each drawn from a single (stable) Gaussian distribution. For each dataset (indexed
by m), we constructed a random covariance matrix, Σm:

Σm ¼ CC>; where ð11Þ

Cði; jÞ � N ð0; 1Þ; andwhere ð12Þ
i; j 2 1; 2; :::; 50½ �. In other words, all of the observations (for each of the 300
timepoints) within each dataset were drawn from a multivariate Gaussian
distribution with the same covariance matrix, and the 100 datasets each used a
different covariance matrix.

Random: we generated a second set of 100 synthetic datasets whose
observations at each timepoint were drawn from a Gaussian distribution with a
new randomly constructed (using Eq. (11)) covariance matrix. Because each
timepoint’s covariance matrix was drawn independently from the covariance
matrices for all other timepoints, these datasets provided a test of reconstruction
accuracy in the absence of any meaningful underlying temporal structure in the
dynamic correlations underlying the data.

Ramping: we generated a third set of 100 synthetic datasets whose underlying
correlations changed gradually over time. For each dataset, we constructed two
“anchor” covariance matrices using Eq. (11), Σstart and Σend. For each of the 300
timepoints in each dataset, we drew the observations from a multivariate Gaussian
distribution whose covariance matrix at each timepoint t 2 0; :::; 299½ � was given by

Σt ¼ 1� t
299

� �
Σstart þ

t
299

Σend: ð13Þ

The gradually changing correlations underlying these datasets allow us to evaluate
the recovery of dynamic correlations when each timepoint’s correlation matrix is
unique (as in the random datasets), but where the correlation dynamics are
structured and exhibit first-order autocorrelations (as in the constant datasets).

Event: we generated a fourth set of 100 synthetic datasets whose underlying
correlation matrices exhibited prolonged intervals of stability, interspersed with
abrupt changes. For each dataset, we used Eq. (11) to generate five random
covariance matrices. We constructed a timeseries where each set of 60 consecutive
samples was drawn from a Gaussian with the same covariance matrix. These
datasets were intended to simulate a system that exhibits periods of stability
punctuated by occasional abrupt state changes.

Synthetic data: simulating dynamic high-order correlations. We developed an
iterative procedure for constructing timeseries data that exhibits known dynamic
high-order correlations. The procedure builds on our approach to generating
dynamic first-order correlations. Essentially, once we generate a timeseries with
known first-order correlations, we can use the known first-order correlations as a
template to generate a new timeseries of second-order correlations. In turn, we can
generate a timeseries of third-order correlations from the second-order correla-
tions, and so on. In general, we can generate order n correlations given a timeseries
of order n− 1 correlations, for any n > 1. Finally, given the order n timeseries, we
can reverse the preceding process to generate an order n− 1 timeseries, an order
n− 2 order timeseries, and so on, until we obtain an order 0 timeseries of simu-
lated data that reflects the chosen high-order dynamics.

The central mathematical operation in our procedure is the Kronecker product
(⊗). The Kronecker product of a K × K matrix, m1, with itself (i.e., m1⊗m1)
produces a new K2 × K2 matrix, m2 whose entries reflect a scaled tiling of the
entries in m1. If these tilings (scaled copies of m1) are indexed by row and column,
then the tile in the ith row and jth column contains the entries of m1, multiplied by
m1(i, j). Following this pattern, the Kronecker product m2⊗m2 yields the K4 × K4

matrix m3 whose tiles are scaled copies of m2. In general, repeated applications of
the Kronecker self-product may be used to generate mn+1=mn⊗mn for n > 1,
where mn+1 is a K2n ´K2n matrix. After generating a first-order timeseries of
dynamic correlations (see Synthetic data: simulating dynamic first-order
correlations), we use this procedure (applied independently at each timepoint) to
transform it into a timeseries of nth-order correlations. When mn+1 is generated in
this way, the temporal structure of the full timeseries (i.e., constant, random,
ramping, event) is preserved, since changes in the original first-order timeseries are
also reflected in the scaled tilings of itself that comprise the higher-order matrices.

Given a timeseries of nth-order correlations, we then need to work “backwards”
in order to generate the order-zero timeseries. If the nth-order correlation matrix at
a given timepoint is mn, then we can generate an order n− 1 correlation matrix
(for n > 1) by taking a draw from N 0;mn

� �
and reshaping the resulting vector to
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have square dimensions. To force the resulting matrix to be symmetric, we remove
its lower triangle, and replace the lower triangle with (a reflected version of) its
upper triangle. Intuitively, the reshaped matrix will look like a noisy (but
symmetric) version of the template matrix, mn−1. (When n= 1, no reshaping is
needed; the resulting K-dimensional vector may be used as the observation at the
given timepoint.) After independently drawing each timepoint’s order n− 1
correlation matrix from that timepoint’s order n correlation matrix, this process
can be applied repeatedly until n= 0. This results in a K-dimensional timeseries of
T observations containing the specified high-order correlations at orders 1 through
n. Following our approach to generating synthetic data exhibiting known first-
order correlations, we constructed a total of 400 additional multivariate timeseries,
collectively reflecting a total of four qualitatively different patterns of dynamic
correlations (i.e., 100 datasets reflecting each type of dynamic pattern: constant,
random, ramping, and event). Each timeseries comprised 10 zero-order features
(dimensions) that varied over 300 timepoints. After applying our dynamic
correlation estimation procedure, this yielded a 100-dimensional timeseries of first-
order features that could then be used to estimate dynamic second-order
correlations. (We chose to use K= 10 zero-order features for our higher-order
simulations in order to put the accuracy computations displayed in Figs. 2 and 3 on
a roughly even footing.)

Functional neuroimaging data collected during story listening. We examined an
fMRI dataset collected by36 that the authors have made publicly available at
arks.princeton.edu/ark:/88435/dsp015d86p269k. The dataset comprises neuroi-
maging data collected as participants listened to an audio recording of a story
(intact condition; 36 participants), listened to temporally scrambled recordings of
the same story (17 participants in the paragraph-scrambled condition listened to
the paragraphs in a randomized order and 36 in the word-scrambled condition
listened to the words in a randomized order), or lay resting with their eyes open in
the scanner (rest condition; 36 participants). Full neuroimaging details may be
found in the original paper for which the data were collected36. Procedures were
approved by the Princeton University Committee on Activities Involving Human
Subjects, and by the Western Institutional Review Board (Puyallup, WA). All
subjects were native English speakers with normal hearing and provided written
informed consent.

Hierarchical topographic factor analysis (HTFA): following our prior related
work, we used HTFA11 to derive a compact representation of the neuroimaging
data. In brief, this approach approximates the timeseries of voxel activations
(44,415 voxels) using a much smaller number of radial basis function (RBF) nodes
(in this case, 700 nodes, as determined by an optimization procedure11). This
provides a convenient representation for examining full-brain network dynamics.
All of the analyses we carried out on the neuroimaging dataset were performed in
this lower-dimensional space. In other words, each participant’s data matrix, X0,
was a number-of-timepoints by 700 matrix of HTFA-derived factor weights (where
the row and column labels were matched across participants). Code for carrying
out HTFA on fMRI data may be found as part of the BrainIAK toolbox88, which
may be downloaded at brainiak.org.

Temporal decoding. We sought to identify neural patterns that reflected partici-
pants’ ongoing cognitive processing of incoming stimulus information. As reviewed
by Simony et al.36, one way of homing in on these stimulus-driven neural patterns
is to compare activity patterns across individuals (e.g., using ISFC analyses). In
particular, neural patterns will be similar across individuals to the extent that the
neural patterns under consideration are stimulus-driven, and to the extent that the
corresponding cognitive representations are reflected in similar spatial patterns
across people55. Following this logic, we used an across-participant temporal
decoding test developed by11 to assess the degree to which different neural patterns
reflected ongoing stimulus-driven cognitive processing across people (Fig. 10). The
approach entails using a subset of the data to train a classifier to decode stimulus
timepoints (i.e., moments in the story participants listened to) from neural pat-
terns. We use decoding (forward inference) accuracy on held-out data, from held-
out participants, as a proxy for the extent to which the inputted neural patterns
reflected stimulus-driven cognitive processing in a similar way across individuals.

Forward inference and decoding accuracy. We used an across-participant correla-
tion-based classifier to decode which stimulus timepoint matched each timepoint’s
neural pattern (Fig. 10). We first divided the participants into two groups: a
template group, Gtemplate (i.e., training data), and a to-be-decoded group, Gdecode

(i.e., test data). We used Eq. (7) to compute a DISFC matrix for each group
(�Ctemplate and �Cdecode, respectively). We then correlated the rows of �Ctemplate and
�Cdecode to form a number-of-timepoints by number-of-timepoints decoding matrix,
Λ. In this way, the rows of Λ reflected timepoints from the template group, while
the columns reflected timepoints from the to-be-decoded group. We used Λ to
assign temporal labels to each row �Cdecode using the row of �Ctemplate with which it
was most highly correlated. We then repeated this decoding procedure, but using
Gdecode as the template group and Gtemplate as the to-be-decoded group. Given the
true timepoint labels (for each group), we defined the decoding accuracy as the
average proportion of correctly decoded timepoints, across both groups. We

defined the relative decoding accuracy as the difference between the decoding
accuracy and chance accuracy (i.e., 1

T).

Feature weighting and testing. We sought to examine which types of neural features
(i.e., activations, first-order dynamic correlations, and higher-order dynamic cor-
relations) were informative to the temporal decoders. Using the notation above,
these features correspond to X0, X1, X2, X3, and so on.

One challenge to fairly evaluating high-order correlations is that if the kernel
used in Eq. (4) is wider than a single timepoint, each repeated application of the
equation will result in further temporal blur. Because our primary assessment
metric is temporal decoding accuracy, this unfairly biases against detecting
meaningful signal in higher-order correlations (relative to lower-order
correlations). We attempted to mitigate temporal blur in estimating each Xn by
using a Dirac δ function kernel (which places all of its mass over a single timepoint;
Figs. 9b and 10a) to compute each lower-order correlation (X1,X2, ...,Xn−1). We
then used a new (potentially wider, as described below) kernel to compute Xn from
Xn−1. In this way, temporal blurring was applied only in the last step of computing
Xn. We note that, because each Xn is a low-dimensional representation of the
corresponding Yn, the higher-order correlations we estimated reflect true
correlations in the data with lower fidelity than estimates of lower-order
correlations. Therefore, even after correcting for temporal blurring, our approach is
still biased against finding meaningful signal in higher-order correlations.

After computing each X1,X2,..., Xn−1 for each participant, we divided
participants into two equally sized groups (±1 for odd numbers of participants):
Gtrain and Gtest. We then further subdivided Gtrain into Gtrain1

and Gtrain2
. We then

computed Λ (temporal correlation) matrices for each type of neural feature, using
Gtrain1

and Gtrain2
. This resulted in n+ 1Λ matrices (one for the original timeseries

of neural activations, and one for each of n orders of dynamic correlations). Our
objective was to find a set of weights for each of these Λ matrices such that the
weighted average of the n+ 1 matrices yielded the highest decoding accuracy. We
used quasi-Newton gradient ascent89, using decoding accuracy (for Gtrain1

and
Gtrain2

) as the objective function to be maximized, to find an optimal set of training
data-derived weights, ϕ0,1,...,n, where ∑n

i¼0 ϕi ¼ 1 and where ϕi ≥ 08i 2 0; 1; :::; n½ �.
After estimating an optimal set of weights, we computed a new set of n+ 1Λ

matrices correlating the DISFC patterns from Gtrain and Gtest at each timepoint. We
use the resulting decoding accuracy of Gtest timepoints (using the weights in ϕ0,1,...,n
to average the Λ matrices) to estimate how informative the set of neural features
containing up to nth order correlations were.

We used a permutation-based procedure to form stable estimates of decoding
accuracy for each set of neural features. In particular, we computed the decoding
accuracy for each of 10 random group assignments of Gtrain and Gtest. We report the
mean accuracy (along with 95% confidence intervals) for each set of neural
features.

Identifying robust decoding results. The temporal decoding procedure we use to
estimate which neural features support ongoing cognitive processing is governed by
several parameters. In particular, Eq. (4) requires defining a kernel function, which
can take on different shapes and widths. For a fixed set of neural features, each of
these parameters can yield different decoding accuracies. Further, the best decoding
accuracy for a given timepoint may be reliably achieved by one set of parameters,
whereas the best decoding accuracy for another timepoint might be reliably
achieved by a different set of parameters, and the best decoding accuracy across all
timepoints might be reliably achieved by still another different set of parameters.
Rather than attempting to maximize decoding accuracy, we sought to discover the
trends in the data that were robust to classifier parameters choices. Specifically, we
sought to characterize how decoding accuracy varied (under different experimental
conditions) as a function of which neural features were considered.

To identify decoding results that were robust to specific classifier parameter
choices, we repeated our decoding analyses after substituting into Eq. (4) each of a
variety of kernel shapes and widths. We examined Gaussian (Fig. 9c), Laplace
(Fig. 9d), and Mexican Hat (Fig. 9e) kernels, each with widths of 5, 10, 20, and
50 samples. We then report the average decoding accuracies across all of these
parameter choices. This enabled us to (partially) factor out performance
characteristics that were parameter-dependent, within the set of parameters we
examined.

Reverse inference. The dynamic patterns we examined comprise high-dimensional
correlation patterns at each timepoint. To help interpret the resulting patterns in
the context of other studies, we created summary maps by computing the across-
timepoint average pairwise correlations at each order of analysis (first order, second
order, etc.). We selected the 10 strongest (absolute value) correlations at each order.
Each correlation is between the dynamic activity patterns (or patterns of dynamic
high-order correlations) measured at two RBF nodes (see Hierarchical Topo-
graphic Factor Analysis). Therefore, the 10 strongest correlations involved up to 20
RBF nodes. Each RBF defines a spatial function whose activations range from 0 to
1. We constructed a map of RBF components that denoted the endpoints of the
10 strongest correlations (we set each RBF to have a maximum value of 1). We then
carried out a meta analysis using Neurosynth38 to identify the 10 terms most
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commonly associated with the given map. This resulted in a set of 10 terms
associated with the average dynamic correlation patterns at each order.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study as well as the
source data for this paper are available at github.com/ContextLab/timecorr-paper/
releases/tag/v0.4 and has been deposited in the Zenodo database under accession code
https://doi.org/10.5281/zenodo.5165253. The source data underlying Figs. 2–6 and
Supplementary Figs. S1–S9 are provided as Source Data files. Source Data are provided
with the manuscript. The raw fMRI data are protected and are not available due to data

privacy laws. The processed fMRI dataset collected by36 has been made publicly
available90 at arks.princeton.edu/ark:/88435/dsp015d86p269k. Source data are provided
with this paper.

Code availability
All of our analysis code may be downloaded from github.com/ContextLab/timecorr-
paper/releases/tag/v0.4. We have also published a companion Python toolbox that may
be downloaded from timecorr.readthedocs.io.
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Fig. 10 Decoding analysis pipeline. a. Computing dynamic correlations from timeseries data. Given a timeseries of observations as a T × K matrix (or a
set of S such matrices), we use Equation (4) to compute each participant’s DISFC (relative to other participants in the training or test sub-group, as
appropriate). We repeat this process twice-- once using the analysis kernel (shown here as a Gaussian in the upper row of the panel), and once using a δ
function kernel (lower row of the panel). b. Projecting dynamic correlations into a lower-dimensional space. We project the training and test data into K-
dimensional spaces to create compact representations of dynamic correlations at the given order (estimated using the analysis kernel). c. Kernel trick. We
project the dynamic correlations computed using a δ function kernel into a common K-dimensional space. These low-dimensional embeddings are fed back
through the analysis pipeline in order to compute features at the next-highest order. d. Decoding analysis. We split the training data into two equal groups,
and optimize the feature weights (i.e., dynamic correlations at each order) to maximize decoding accuracy. We then apply the trained classifier to the
(held-out) test data.
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