96 research outputs found

    Intracranial meningiomas: an update of the 2021 World Health Organization classifications and review of management with a focus on radiation therapy

    Get PDF
    Meningiomas account for approximately one third of all primary intracranial tumors. Arising from the cells of the arachnoid mater, these neoplasms are found along meningeal surfaces within the calvarium and spinal canal. Many are discovered incidentally, and most are idiopathic, although risk factors associated with meningioma development include age, sex, prior radiation exposure, and familial genetic diseases. The World Health Organization grading system is based on histologic criteria, and are as follows: grade 1 meningiomas, a benign subtype; grade 2 meningiomas, which are of intermediately aggressive behavior and usually manifest histologic atypia; and grade 3, which demonstrate aggressive malignant behavior. Management is heavily dependent on tumor location, grade, and symptomatology. While many imaging-defined low grade appearing meningiomas are suitable for observation with serial imaging, others require aggressive management with surgery and adjuvant radiotherapy. For patients needing intervention, surgery is the optimal definitive approach with adjuvant radiation therapy guided by extent of resection, tumor grade, and location in addition to patient specific factors such as life expectancy. For grade 1 lesions, radiation can also be used as a monotherapy in the form of stereotactic radiosurgery or standard fractionated radiation therapy depending on tumor size, anatomic location, and proximity to dose-limiting organs at risk. Optimal management is paramount because of the generally long life-expectancy of patients with meningioma and the morbidity that can arise from tumor growth and recurrence as well as therapy itself

    Outcomes of surgery and postoperative radiation therapy in managing medullary thyroid carcinoma

    Get PDF
    Background and Objectives We evaluated the outcomes of surgery with or without postoperative radiation therapy (PORT) in the management of medullary thyroid carcinoma (MTC). Methods From two tertiary cancer centers, 297 consecutive patients with MTC treated with PORT (n = 46) between 1990 and 2016 or surgery alone (n = 251) between 2000 and 2016 were reviewed. Results Ten-year cumulative incidences of locoregional and distant failure were 30.2% and 24.9% in the surgery cohort, and 16.9% and 55.2% in the PORT cohort. In the surgery alone cohort, T4 disease, extrathyroidal extension, N1 disease, extranodal extension (ENE), and residual disease after surgery were associated with local failure. The PORT cohort had significantly higher proportions of patients with T4 disease, N1 disease, ENE, and residual disease. Conclusions High-risk clinical features can help identify patients with MTC at high-risk for local failure after surgery alone. Patients with high-risk clinical features had effective locoregional control after PORT

    PEERS - an open science “Platform for the Exchange of Experimental Research Standards” in biomedicine

    Get PDF
    Funding The PEERS Consortium is currently funded by Cohen Veterans Bioscience Ltd and grants COH-0011 from Steven A. Cohen. Acknowledgements We would like to thank IJsbrand Jan Aalbersberg, Natasja de Bruin, Philippe Chamiot-Clerc, Anja Gilis, Lieve Heylen, Martine Hofmann, Patricia Kabitzke, Isabel Lefevre, Janko Samardzic, Susanne Schiffmann and Guido Steiner for their valuable input and discussions during the conceptualization of PEERS and the initial phase of the project.Peer reviewedPublisher PD

    Tumor Treating Fields Suppress Tumor Cell Growth and Neurologic Decline in Models of Spinal Metastases

    Get PDF
    Spinal metastases can result in severe neurologic compromise and decreased overall survival. Despite treatment advances, local disease progression is frequent, highlighting the need for novel therapies. Tumor treating fields (TTFields) impair tumor cell replication and are influenced by properties of surrounding tissue. We hypothesized that bone\u27s dielectric properties will enhance TTFields-mediated suppression of tumor growth in spinal metastasis models. Computational modeling of TTFields intensity was performed following surgical resection of a spinal metastasis and demonstrated enhanced TTFields intensity within the resected vertebral body. Additionally, luciferase-tagged human KRIB osteosarcoma and A549 lung adenocarcinoma cell lines were cultured in demineralized bone grafts and exposed to TTFields. Following TTFields exposure, the bioluminescence imaging (BLI) signal decreased to 10%-80% of baseline, while control cultures displayed a 4.48- to 9.36-fold increase in signal. Lastly, TTFields were applied in an orthotopic murine model of spinal metastasis. After 21 days of treatment, control mice demonstrated a 5-fold increase in BLI signal compared with TTFields-treated mice. TTFields similarly prevented tumor invasion into the spinal canal and development of neurologic symptoms. Our data suggest that TTFields can be leveraged as a local therapy within minimally conductive bone of spinal metastases. This provides the groundwork for future studies investigating TTFields for patients with treatment-refractory spinal metastases

    Advances in the Management of Spinal Metastases: What the Radiologist Needs to Know

    Get PDF
    Spine is the most frequently involved site of osseous metastases. With improved disease-specific survival in patients with Stage IV cancer, durability of local disease control has become an important goal for treatment of spinal metastases. Herein, we review the multidisciplinary management of spine metastases, including conventional external beam radiation therapy, spine stereotactic radiosurgery, and minimally invasive and open surgical treatment options. We also present a simplified framework for management of spinal metastases used at The University of Texas MD Anderson Cancer Center, focusing on the important decision points where the radiologist can contribute

    Outcomes and Pattern of Care for Spinal Myxopapillary Ependymoma in the Modern Era-A Population-Based Observational Study

    Get PDF
    (1) Background: Myxopapillary ependymoma (MPE) is a rare tumor of the spine, typically slow-growing and low-grade. Optimal management strategies remain unclear due to limited evidence given the low incidence of the disease. (2) Methods: We analyzed data from 1197 patients with spinal MPE from the Surveillance, Epidemiology, and End Results (SEER) database (2000-2020). Patient demographics, treatment modalities, and survival outcomes were examined using statistical analyses. (3) Results: Most patients were White (89.9%) with a median age at diagnosis of 42 years. Surgical resection was performed in 95% of cases. The estimated 10-year overall survival was 91.4%. Younger age (hazard ratio (HR) = 1.09, p \u3c 0.001) and receipt of surgery (HR = 0.43, p = 0.007) were associated with improved survival. Surprisingly, male sex was associated with worse survival (HR = 1.86, p = 0.008) and a younger age at diagnosis compared to females. (4) Conclusions: This study, the largest of its kind, underscores the importance of surgical resection in managing spinal MPE. The unexpected association between male sex and worse survival warrants further investigation into potential sex-specific pathophysiological factors influencing prognosis. Despite limitations, our findings contribute valuable insights for guiding clinical management strategies for spinal MPE

    Brain Metastases from Biliary Tract Cancer: Case Series and Clinicogenomic Analysis

    Get PDF
    BACKGROUND: Limited data from small series have suggested that brain metastases from biliary tract cancers (BrM-BTC) affect ≤2% of patients with BTC. We sought to review our experience with patients with BrM-BTC and to identify associations of tumor-related molecular alterations with outcomes. MATERIALS AND METHODS: A retrospective review of patients with BTC seen at a tertiary referral center from 2005 to 2021 was performed; patients with BrM-BTC were identified, and clinical and molecular data were collected. RESULTS: Twenty-one of 823 patients with BTC (2.6%) developed BrM. For patients with BrM-BTC, median follow-up time was 27.9 months after primary BTC diagnosis and 3.1 months after BrM diagnosis. Median time from primary diagnosis to diagnosis of BrM was 14.4 [range, 1.1-66.0] months. Median overall survival (OS) from primary diagnosis was 31.5 [2.9-99.8] months and median OS from BrM diagnosis was 4.2 [0.2-33.8] months. Patients who underwent BrM-directed therapy trended toward longer OS following BrM diagnosis than patients receiving supportive care only (median 6.5 vs 0.8 months, P = .060). The BrM-BTC cohort was enriched for BRAF (30%), PIK3CA (25%), and GNAS (20%) mutations. patients with BrM-BTC with BRAF mutations trended toward longer OS following BrM diagnosis (median 13.1 vs 4.2 months, P = .131). CONCLUSION: This is the largest series of patients with BrM-BTC to date and provides molecular characterization of this rare subgroup of patients with BTC. Patients with BrM-BTC may be more likely to have BRAF mutations. With advances in targeted therapy for patients with BTC with actionable mutations, continued examination of shifting patterns of failure, with emphasis on BrM, is warranted

    Response of Treatment-Naive Brain Metastases to Stereotactic Radiosurgery

    Get PDF
    With improvements in survival for patients with metastatic cancer, long-term local control of brain metastases has become an increasingly important clinical priority. While consensus guidelines recommend surgery followed by stereotactic radiosurgery (SRS) for lesions \u3e3 cm, smaller lesions (≤3 cm) treated with SRS alone elicit variable responses. To determine factors influencing this variable response to SRS, we analyzed outcomes of brain metastases ≤3 cm diameter in patients with no prior systemic therapy treated with frame-based single-fraction SRS. Following SRS, 259 out of 1733 (15%) treated lesions demonstrated MRI findings concerning for local treatment failure (LTF), of which 202 /1733 (12%) demonstrated LTF and 54/1733 (3%) had an adverse radiation effect. Multivariate analysis demonstrated tumor size (\u3e1.5 cm) and melanoma histology were associated with higher LTF rates. Our results demonstrate that brain metastases ≤3 cm are not uniformly responsive to SRS and suggest that prospective studies to evaluate the effect of SRS alone or in combination with surgery on brain metastases ≤3 cm matched by tumor size and histology are warranted. These studies will help establish multi-disciplinary treatment guidelines that improve local control while minimizing radiation necrosis during treatment of brain metastasis ≤3 cm
    corecore