

Cerebral Blood Volume Changes During Radiotherapy May Predict Pseudoprogression versus Disease Progression for Patients with High Grade Glioma

Jodi Goldman, BS¹; Maguy Farhat, MD¹; Brandon Curl, HS¹; Carlo Torres, BS¹; Lily G. Erickson, BS¹; Divya Yadav, MD¹; Rituraj Upadhyay, MBBS, MD¹; Todd A. Swanson, MD, PhD¹; Arnold C. Paulino, MD¹; Kristina D. Woodhouse, MD¹; Amol J. Ghia, MD¹; Chenyang Wang, MD, PhD¹; Jing Li, MD, PhD¹; Thomas H. Beckham, MD, PhD¹; Vinodh A. Kumar, MD²; Benjamin M. Ellingson, PhD³; James P. Long, PhD⁴; Caroline Chung, MD, MSc¹

¹Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. ²Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, Texas. ³UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA. ⁴Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas.

Rationale

- Patients with high grade glioma (HGG) often demonstrate increased contrast enhancement following chemoradiation (CRT) that may represent pseudoprogression (PsP) or disease progression (DP)
- PsP occurs within 6 months following CRT, results from treatment-induced changes, and is associated with improved survival
- Diagnosis of PsP vs DP impacts clinical decision making
- Post-RT relative cerebral blood volume (rCBV) used as marker to differentiate PsP vs DP

Primary Objective

 Retrospectively determine if a change in rCBV within the first 3 weeks of CRT can predict PsP vs DP for patients with HGG

Secondary Objectives

 Determine if MGMT Methylation status predicts for PsP vs DP

Materials & Methods Patient Eligibility

Patient Demographics							
	All (n=26)	PsP (n=13)	DP (n=11)				
Age, median (range), year	61 (28-74)	62 (28-74)	57 (48-67)				
Gender, male (%)	15 (58)	9 (69)	6 (55)				
MGMT Methylation Status							
Methylated (%)	8 (31)	5 (38)	3 (27)				
Unmethylated (%)	14 (54)	5 (38)	7 (64)				
Unknown (%)	4 (15)	3 (23)	1 (9)				
Race, white (%)	24 (92)	13 (100)	9 (82)				
KPS (%)							
≥ 70	24 (92)	13 (100)	8 (73)				
< 70	2 (8)	0 (0)	2 (18)				
Histology (%)							
GBM	22 (85)	9 (69)	11 (100)				
Astrocytoma	3 (13)	3 (23)	0 (0)				
Oligodendroglioma	1 (4)	1 (8)	0 (0)				

Kesu	Its				
	All (n=14)	PsP (n=8)	DP (n=6)	*p-value	95% Confidence Interval
MR Sim rCBV				0.82	-1.12 – 0.90
Mean	0.85	0.81	0.92		
Median	0.51	0.37	0.67		
3-week rCBV				0.44	-1.51 - 0.70
Mean	0.92	0.74	1.15		
Median	0.63	0.51	0.85		
Change in rCBV				0.15	-0.71 – 0.12
Mean	0.06	-0.06	0.23		
Median	0.11	0.06	0.18		
	All GBM (n=12)	PsP (n=6)	DP (n=6)	*p-value	95% Confidence Interval
MR Sim rCBV				0.90	-1.10 – 1.23
Mean	0.95	0.98	0.92		
Median	0.67	0.72	0.67		
3-week rCBV				0.85	-1.24 – 1.05
Mean	1.10	1.05	1.15		
Mean Median	1.10 0.84	1.05 0.75	1.15 0.85		
Mean Median Change in rCBV	1.10 0.84	1.05 0.75	1.15 0.85	0.28	-0.49 – 0.16
Mean Median Change in rCBV Mean	1.10 0.84 0.15	1.05 0.75 0.07	1.15 0.85 0.23	0.28	-0.49 – 0.16
Mean Median Change in rCBV Mean Median	1.10 0.84 0.15 0.12	1.05 0.75 0.07 0.12	1.15 0.85 0.23 0.18	0.28	-0.49 – 0.16

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

- Newly diagnosed HGG
- T1+C and DSC scans at MR Sim and 3week F/U
- At least 6-month F/U

Tumor Segmentation & Postprocessing

- Manual contouring on Axial MRIs using RayStation Non-Clinical – 10B DTK
- Leakage correction algorithm run on MATLAB 10a
- rCBV:

0m

3 week f /u Tumor rCBV

MR Sim Tumor rCBV

PsP

3 week f/u NAWM rCBV MR Sim NAWM rCBV = Change in rCBV During RT

1m

Radiation Timeline

CBV Change of Interest

Patient Categorization

Radiologist Impression	Neuro- Oncologist Tx Plan	PsP	DP	Stable/ Responding
Treatment-related changes	No treatment change	\checkmark		
Disease progression	Treatment change		\checkmark	
Inconclusive	Treatment change		\checkmark	
Inconclusive	No treatment change	\checkmark		
Stable	No treatment change			\checkmark

Statistical Analysis

 Unpaired t-test to determine if early rCBV change and Fisher's exact test to determine if MGMT methylation status are significantly different between PsP and DP groups

References

CBV

- Tsakiris, C et al. (2020). *World Neurosurgery.* 144, e100-e109.
- Young, R et al. (2013). *Clinical imaging.* 37(1), 41-49. Prager, A et al. (2015). *American Journal* of Neuroradiology. 36(5), 877-885.

Wang, S et al. (2016). *American Journal of Neuroradiology.* 37(1), 28-36.

Zikou, A. et al. (2018). Contrast media & molecular imaging. 2018.

- Preclinical literature in GBM mouse models suggests that radiation-induced microvascular changes take time
 - Angiogenesis inhibition and a significant decrease in perfusion seen at 2 weeks post-treatment (Seo et al. 2019, Kioi et al. 2010)
- Vascular changes may be delayed in human tumors comparative to animal models (Eberhard et al. 2000)

Future Directions

- Determine if a change in rCBV between MR Sim and <u>1-month post-CRT</u> predicts PsP vs DP
- Even if rCBV as an independent biomarker is not predictive, investigate whether it serves as useful input for a mechanistic mathematical model that forecasts tumor behavior

Acknowledgement

JG was funded by the First Year Medical Student Summer Research Program.