380 research outputs found

    3D facial landmarks: Inter-operator variability of manual annotation

    Get PDF
    BACKGROUND: Manual annotation of landmarks is a known source of variance, which exist in all fields of medical imaging, influencing the accuracy and interpretation of the results. However, the variability of human facial landmarks is only sparsely addressed in the current literature as opposed to e.g. the research fields of orthodontics and cephalometrics. We present a full facial 3D annotation procedure and a sparse set of manually annotated landmarks, in effort to reduce operator time and minimize the variance. METHOD: Facial scans from 36 voluntary unrelated blood donors from the Danish Blood Donor Study was randomly chosen. Six operators twice manually annotated 73 anatomical and pseudo-landmarks, using a three-step scheme producing a dense point correspondence map. We analyzed both the intra- and inter-operator variability, using mixed-model ANOVA. We then compared four sparse sets of landmarks in order to construct a dense correspondence map of the 3D scans with a minimum point variance. RESULTS: The anatomical landmarks of the eye were associated with the lowest variance, particularly the center of the pupils. Whereas points of the jaw and eyebrows have the highest variation. We see marginal variability in regards to intra-operator and portraits. Using a sparse set of landmarks (n=14), that capture the whole face, the dense point mean variance was reduced from 1.92 to 0.54 mm. CONCLUSION: The inter-operator variability was primarily associated with particular landmarks, where more leniently landmarks had the highest variability. The variables embedded in the portray and the reliability of a trained operator did only have marginal influence on the variability. Further, using 14 of the annotated landmarks we were able to reduced the variability and create a dense correspondences mesh to capture all facial features

    Speckle-Tracking Echocardiography for Predicting Outcome in Chronic Aortic Regurgitation During Conservative Management and After Surgery

    Get PDF
    ObjectivesThe aim of this study was to test myocardial deformation imaging using speckle-tracking echocardiography for predicting outcomes in chronic aortic regurgitation.BackgroundIn chronic aortic regurgitation, left ventricular (LV) dysfunction must be detected early to allow timely surgery. Speckle-tracking echocardiography has been proposed for this purpose, but the clinical value of this method in aortic regurgitation has not been established.MethodsA longitudinal study was performed in 64 patients with moderate to severe aortic regurgitation. Thirty-five patients were managed conservatively with frequent clinical visits and sequential echocardiography and followed for an average of 19 ± 8 months, while 29 patients underwent surgery for the valve lesion and were followed for 6 months post-operatively. Baseline LV function by speckle-tracking and conventional echocardiography was compared with impaired outcome after surgery (defined as persisting symptoms or persisting LV dilation [LV end-diastolic volume index ≥87 ml/m2] or dysfunction [LV ejection fraction <50%]) and with disease progression during conservative management (defined as development of symptoms, increase in LV volume >15%, or decrease in LV ejection fraction >10%).ResultsReduced myocardial systolic strain, systolic strain rate, and early diastolic strain rate by speckle-tracking echocardiography was associated with disease progression during conservative management (−16.3% vs. −19.0%, p = 0.02; −1.04 vs. −1.19 s−1, p = 0.02; and 1.20 vs. 1.60 s−1, p = 0.002, respectively) and with impaired outcome after surgery (−11.5% vs. −15.6%, p = 0.01; −0.88 vs. −1.01 s−1, p = 0.04; and 0.98 vs. 1.33 s−1, p = 0.01, respectively). Conventional parameters of LV function and size (LV ejection fraction and LV end-diastolic volume index) were associated with outcome after surgery (p = 0.04 and p = 0.01, respectively) but not with outcome during conservative management (p = 0.57 and p = 0.39, respectively).ConclusionsSpeckle-tracking echocardiography is useful for the early detection of LV systolic and diastolic dysfunction in chronic aortic regurgitation

    Regional Longitudinal Myocardial Deformation Provides Incremental Prognostic Information in Patients with ST-Segment Elevation Myocardial Infarction

    Get PDF
    Global longitudinal systolic strain (GLS) has recently been demonstrated to be a superior prognosticator to conventional echocardiographic measures in patients after myocardial infarction (MI). The aim of this study was to evaluate the prognostic value of regional longitudinal myocardial deformation in comparison to GLS, conventional echocardiography and clinical information.In total 391 patients were admitted with ST-Segment elevation myocardial infarction (STEMI), treated with primary percutaneous coronary intervention and subsequently examined by echocardiography. All patients were examined by tissue Doppler imaging (TDI) and two-dimensional strain echocardiography (2DSE).During a median-follow-up of 5.3 (IQR 2.5-6.1) years the primary endpoint (death, heart failure or a new MI) was reached by 145 (38.9%) patients. After adjustment for significant confounders (including conventional echocardiographic parameters) and culprit lesion, reduced longitudinal performance in the anterior septal and inferior myocardial regions (but not GLS) remained independent predictors of the combined outcome. Furthermore, inferior myocardial longitudinal deformation provided incremental prognostic information to clinical and conventional echocardiographic information (Harrell's c-statistics: 0.63 vs. 0.67, p = 0.032). In addition, impaired longitudinal deformation outside the culprit lesion perfusion region was significantly associated with an adverse outcome (p<0.05 for all deformation parameters).Regional longitudinal myocardial deformation measures, regardless if determined by TDI or 2DSE, are superior prognosticators to GLS. In addition, impaired longitudinal deformation in the inferior myocardial segment provides prognostic information over and above clinical and conventional echocardiographic risk factors. Furthermore, impaired longitudinal deformation outside the culprit lesion perfusion region seems to be a paramount marker of adverse outcome

    A simple, reproducible method for monitoring the treatment of tumours using dynamic contrast-enhanced MR imaging

    Get PDF
    Dynamic contrast-enhanced MR imaging (DCE-MRI) may act as a biomarker for successful cancer therapy. Simple, reproducible techniques may widen this application. This paper demonstrates a single slice imaging technique. The image acquisition is performed in less than 500 ms making it relatively insensitive to respiratory motion. Data from phantom studies and a reproducibility study in solid human tumours are presented. The reproducibility study showed a coefficient of variation (CoV) of 19.1% for Ktrans and 15.8% for the initial area under the contrast enhancement curve (IAUC). This was improved to 16 and 13.9% if tumours of diameter less than 3 cm were excluded. The individual repeatability (the range within which individual measurements are expected to fall) was 30.6% for Ktrans and 26.5% for IAUC for tumours greater than 3 cm diameter. This approach to DCE–MRI image acquisition can be performed with standard clinical scanners, and data analysis is straightforward. For treatment trials with 10 patients in a cohort, the CoV implies that the method would be sensitive to a treatment effect of greater than 18%. The individual repeatability is well inside the 40% change shown to be important in clinical studies using this DCE–MRI technique

    Comprehensive characterization of molecular interactions based on nanomechanics

    Get PDF
    Molecular interaction is a key concept in our understanding of the biological mechanisms of life. Two physical properties change when one molecular partner binds to another. Firstly, the masses combine and secondly, the structure of at least one binding partner is altered, mechanically transducing the binding into subsequent biological reactions. Here we present a nanomechanical micro-array technique for bio-medical research, which not only monitors the binding of effector molecules to their target but also the subsequent effect on a biological system in vitro. This label-free and real-time method directly and simultaneously tracks mass and nanomechanical changes at the sensor interface using micro-cantilever technology. To prove the concept we measured lipid vesicle (approximately 748*10(6) Da) adsorption on the sensor interface followed by subsequent binding of the bee venom peptide melittin (2840 Da) to the vesicles. The results show the high dynamic range of the instrument and that measuring the mass and structural changes simultaneously allow a comprehensive discussion of molecular interactions
    • …
    corecore