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Abstract

Background: Manual annotation of landmarks is a known source of variance, which exist in all fields of medical
imaging, influencing the accuracy and interpretation of the results. However, the variability of human facial landmarks
is only sparsely addressed in the current literature as opposed to e.g. the research fields of orthodontics and
cephalometrics. We present a full facial 3D annotation procedure and a sparse set of manually annotated landmarks,
in effort to reduce operator time and minimize the variance.

Method: Facial scans from 36 voluntary unrelated blood donors from the Danish Blood Donor Study was randomly
chosen. Six operators twice manually annotated 73 anatomical and pseudo-landmarks, using a three-step scheme
producing a dense point correspondence map. We analyzed both the intra- and inter-operator variability, using
mixed-model ANOVA. We then compared four sparse sets of landmarks in order to construct a dense correspondence
map of the 3D scans with a minimum point variance.

Results: The anatomical landmarks of the eye were associated with the lowest variance, particularly the center of the
pupils. Whereas points of the jaw and eyebrows have the highest variation. We see marginal variability in regards to
intra-operator and portraits. Using a sparse set of landmarks (n=14), that capture the whole face, the dense point
mean variance was reduced from 1.92 to 0.54 mm.

Conclusion: The inter-operator variability was primarily associated with particular landmarks, where more leniently
landmarks had the highest variability. The variables embedded in the portray and the reliability of a trained operator
did only have marginal influence on the variability. Further, using 14 of the annotated landmarks we were able to
reduced the variability and create a dense correspondences mesh to capture all facial features.

Keywords: 3D Facial landmarks, Inter-operator annotation variance, Dense point correspondence, Point distribution
mode, ANOVA

Background
The research field of facial morphology has advanced
rapidly over the last ten years, with the introduction of
better, faster, and cheaper systems for facial 3D scanning.
The systems have enabled more accurate and objective
methods of capturing differences in facial morphology.
Analysis of facial morphology is based on facial distances
i.e. the distance between facial landmarks [1-3] or on sta-
tistical models [1,4]. One widely used statistical method,
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uses Principal Component Analysis (PCA) to assess the
population variance and is referred to as a Point Distri-
bution Model (PDM) [5]. Both methods rely on manually
annotated landmarks that are used directly or as a basis for
constructing a dense point correspondence [1,4-6]. This
means that both direct distances and statistically based
methods are prone to human operator annotation errors.
There exist several surface-based automatic registration
methods for point correspondence, still for manual anno-
tation, at least on a sparse set of landmarks, is widely
used when facial analysis is used in clinical applications.
Understanding the variance (noise) introduced by man-
ually annotated landmarks is important for knowing the

© 2014 Fagertun et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

mailto: thomas.hansen@regionh.dk
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Fagertun et al. BMC Medical Imaging 2014, 14:35 Page 2 of 9
http://www.biomedcentral.com/1471-2342/14/35

statistical power of such studies, i.e. the interpretation
and application, and aiding future study design in this
field.

The reliability of facial landmark annotation has not
been as thoroughly studied as landmark annotations in
other fields, e.g. cephalometry [7]. For example, Buschang
et al. [8] assessed the inter-operator annotation variability
of anatomical landmarks on the skull for use in orthodon-
tics and cephalometric analysis, using ANOVA analysis.
Similarly, recent have also addressed the reliability of
cranial-anatomical landmarks [9-11]. By Larsen et al. the
inter-operator annotation variance was included in the
PCA when analyzing cranial growth [12]. Here the land-
mark variance was addressed using a weighting scheme
giving most weight to annotation landmarks with low
variance.

In this study, we exclusively work with human facial
features. We address the reliability of facial feature anno-
tation with respect to inter/intra operators and samples
(portraits). To the best of our knowledge, this is the first
report on variability of face morphology with respect to
the measurements of the face surface, per se. In effort
to reduce annotation variability i.e. reduce the signal
to noise ratio, we suggest a sub-set of landmarks that
yields a superior dense-point correspondence compared
to the original landmarks, based on the reliability of facial
landmarks.

Methods
Sample and image data
The data used in this work consists of 36 facial scans of
healthy unrelated subjects, recruited among volunteers in
the Danish Blood Donor Study (DBDS) [13]. The 36 sub-
jects were chosen by simple random sampling from our
database consisting of facial scans from 641 subjects, hav-
ing 50% males. The facial scans were captured using a
Canfield Vectra M3 Imaging System, at the DBDS facil-
ity at Glostrup University Hospital. Each 3D facial scan
contains about 70,000 to 100,000 3D points and has shape
information (x-, y-, z-point positions) and texture infor-
mation (red, green, blue intensities) for every 3D point.
The study was approved ethically by the Danish Scientific
Committee and was reported to the Danish Data Protec-
tion Agency. All the patients have given written informed
consent prior to inclusion in the project. The facial image
used in figures, is a statistically average face and does
picture any participant.

Description of annotation points
The annotation framework initially developed by
Fagertun et al. consists of 73 landmarks [14]. Here, 24 ana-
tomical landmarks define distinct facial features, and 49
pseudo-landmarks define the curves and width of the jaw,
lips, eyebrows etc. A description is presented in Figure 1.

Annotation procedure
All scans followed a three-step annotation scheme:

1. Automated annotation of landmarks (see section
“Data pre-processing by automatic annotations”):

• A fully automatic Active Appearance Model
(AAM) in 2D [15].

• An Active Shape Model (ASM) in 3D [16].

2. Correction by human operator of the pre-annotated
landmarks (see section “Manual annotation tools and
standard”)

3. Post processing (see Section “Dense point
correspondence”)

• Creation of dense point correspondence meshes.

Data pre-processing by automatic annotations
A 2D image was created by orthographic projection of the
3D scan. The face and eyes are automatically detected by
a Viola-Jones Rapid Object Detection [17,18], and serve
as a starting point for an AAM search. When the AAM
converges, the 73 2D annotation points (Figure 1) can be
extracted. These annotation points are then transformed
from the 2D image to the 3D scan. The 2D to 3D transfor-
mation is likely to fail in high curvature areas like the jaw
as points from 2D images are wrongly projected onto the
neck. To compensate for this limitation, an ASM search,
initialized by an Iterative Closest Point search [19], is per-
formed to locate the jaw in 3D. The annotation points
are then manually corrected by an operator see section
“Manual annotation tools and standard”. In summary, the
low curvature points are found by a 2D AAM and trans-
formed to 3D image, while high curvature points are
found by a 3D ASM.

The 2D AAM and 3D ASM were constructed based on
605 individuals recorded by a Nikon D90 in 2D and a
Canfield Vectra M3 Imaging System in 3D, respectively.
Both the 2D and 3D data were annotated to create cor-
respondence between individuals, in the same fashion as
described in the following section.

Manual annotation tools and standard
The object of the manual annotation was to reach a con-
sistent and stable standard for annotation. Prior to the
study the annotation scheme was explained and discussed
during a three-hour workshop (common training pro-
gram), to ensure a common frame of reference. Further,
all operators had annotated more than 100 scans prior to
this training program. The manual annotation is a two-
step process. First, the annotation is performed in a fixed
frontal view by a custom-made annotation tool. The fixed
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Figure 1 Facial landmarks divided into anatomical and pseudo-anatomical landmarks. Anatomical landmarks: 1) Right eyebrow lateral point,
5) Right eyebrow medial point, 9) Left eyebrow lateral point, 13) Left eyebrow medial point, 17) Right eye lateral canthus, 21) Right eye medial
canthus, 25) Left eye lateral canthus, 29) Left eye medial canthus, 33) Right pupil center, 34) Left pupil center, 37) The outer left alar-facial groove, 38)
The inner left alar-labial groove, 40) The columellars connection to the upper lip, 42) The inner right alar-labial groove, 43) The outer right alar-facial
groove, 46) Tip of the nose, 47) Right oral commissure, 49) The right philtrum column connection to the the vermillion border, 50) Midpoint on the
cupid’s bow, 51) The left philtrum column connection to the the vermillion border, 53) Left oral commissure, 63) Right ear attachment, 68) Lowest
point of the central jaw, 73) Left ear attachment.Pseudo-landmarks groups: 2-4 & 6-8) Right eyebrow, 10-12 & 14-16) Left eyebrow, 18-20 & 22-24)
Right eye, 26-28 & 30-32) Left eye, 35 & 36 & 39 & 41 & 44 & 45) Nose, 48 & 52 & 54-62) Mouth, 64-67 & 69-72) Jaw.

view was chosen over free flying mode to allow faster
annotation time. Second, points in high curvature areas
are adjusted in fixed frontal, profile, and top/down views.
The high curvature points are the jaw and nose points
(35-45 and 63-73).

Dense point correspondence
To analyze facial shape variation at positions not anno-
tated by landmarks, a dense point correspondence is cre-
ated. A variety of methods exist for establishing dense
correspondence. In this work we employ a method that
has previously produced excellent results when a sparse
set of landmarks exist [6].

This method is based on propagating a well-formed
template mesh to all shapes in the training set. For each
shape the template mesh is initially deformed using a vol-
umetric thin-plate spline warp [20] and using the sparse
set of corresponding landmarks. In the next step the
mesh vertices of the deformed template mesh are prop-
agated to the target shape. This approach is very similar
to the method used to create the dense surface models
described by Hutton et al. [1,4,5]. While propagating each
vertex to the Euclidian closest point on the target surface

works for simple anatomy, it fails in regions with mod-
erate curvature. A proven solution is to regularize the
correspondence field and add curvature information in
the propagation step. In Paulsen [6] and Hilger [21] this
regularization is cast into a Markov Random Field (MRF)
framework [22], where a prior and an observation term
are defined. The prior model imposes a Gaussian prior
on the deformation field that favors smooth deformation
fields. The curvature of the deformed template mesh and
the target shape is used in the observation term to guide
the correspondence to areas with similar curvature. The
mean curvature is estimated as the radius of a locally fitted
sphere [23]. Finally, the regularization is bounded so the
projected points are on the surface of the target shape. The
optimal correspondence field is found using stochastic
optimization. The involved weighting between the prior
and observation terms is found as the weight that cre-
ates the most compact shape model as described by Hilger
[21]. The result is a regularized dense correspondence
between the template and all the shapes in the training set.
In our experiments, the dense correspondence consists of
39,653 points and the associated mesh connectivity from
the template mesh.
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Software
All results were produced with SAS version 9.4 and
Matlab version R2010b.

Results
Landmark variability
Six operators(one female) annotated 36 scans (50% male,
aged 18 to 65) twice, one week apart. All six opera-
tors went through a common training program and were
unblinded to the study aim. The mean error and standard
deviation of the combined variance of each annotation
point are shown in Figure 2. We observed a association
between the variability and the the specific annotation
point. The center of the pupil was associated with min-
imal variance (SD = 0.09 mm), followed by landmarks
of the eye (SD = 0.30-0.95 mm). The most error-prone
annotation points are the landmarks of the jaw (SD =
1.55-3.34 mm), although the lateral points of the eyebrows
are also error prone (SD = 2.24-2.37 mm). The variance of
each annotation point is illustrated in Figure 3.

Intra/inter operator variability
We used a mixed-model ANOVA analysis, using the
Minimum Variance Quadratic Unbiased Estimation
(MIVQUE) method to estimate the effects of the com-
ponents: operator, session day, and the scan number
(portrait), for each of the 73 annotated points:

Yijk = μ + Oi + Dj + Ik + εijk (1)

where Yijk is the data sample, μ is the global average, Oi, Dj
and Ik are the main effect terms for inter-operator, intra-
operator (session day) and portrait (individual capturing
age and gender), respectively. εijk is the error term for
unexplained variance. Three-way ANOVA using interac-
tion terms was rejected as the model did not contribute
with further explanation of the variance, data not shown.

Generally the session day (i.e. intra-operator) con-
tributed relatively little to the variability, see Figure 4.
The most reliable annotation landmark was the center of
the pupil, as this was only marginally influenced by the
inter/intra-operator and portrait, and was not associated
with a large error term. While no significant difference in
variance was observed between landmarks and pseudo-
landmarks, the variance was more prominent in the points
describing the jaw and nose and to some extent the medial
canthus of the eye, Figure 4.

Statistical model fit
In order to test the PDM stability for different operator
annotations we adapted a coupled leave-one-out cross-
validation scheme. We built a PDM for a single operator
and a PDM from a random sampling (using the same
number of scans as the former) for the remaining five
operators. The PDM’s are built on 35 individuals and the
reconstruction error is measured on the 36th individual.
We then loop over all individuals in the inner leave-
one-out cross-validation loop and over all operators in
the outer leave-one-out cross-validation loop. The mean

Figure 2 Mean annotation error.
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Figure 3 Frontal and profile annotation variance plot. Red ellipse shows 3 standard deviations.

Figure 4 The variance of the operator, session day and portrait.
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Table 1 Mean annotation reconstruction errors in mm

Operator 1 2 3 4 5 6 Mean

Single
operator

1.466 1.577 1.503 1.502 1.465 1.530 1.507

Random
sampling

1.431 1.435 1.421 1.465 1.451 1.393 1.433

The mean annotation errors are shown for a PDM build using a single operator
and for a PDM build from a random sampling of the remaining five operators.

reconstruction error to the mean annotation points for all
six operators is presented in Table 1. The table shows that
the PDM constructed by random operators is consistently
better at reconstructing the annotations. Interestingly no
single operator yields a PDM that perform better than the
randomly selected PDM.

Dense point correspondence optimization
The 73 annotated points were associated with different
variability. We tested four different sub selections of these
annotation points in a effort to minimize the variance

of the resulting dense point correspondence. Two land-
mark selections simply excluded annotation points with
the highest variance in mean error (>1 mm) and operator
error (>0.5 mm), respectively. Two landmark selections
which aim at selecting landmarks from the main facial
features and with low mean error and variance are also
tested, see Figure 5.

The quality of the derived dense point correspondence
was evaluated by the size of variance between the corre-
spondence points. If the points had good correspondence,
the resulting variation of the correspondence points will
manly describe the difference in the samples (population
variance). In the case of poor correspondence, the vari-
ation will now account for both the population variance
and the inconsistency of correspondence points leading
to a higher variation. We measured the dense mean point
variance for each annotation point and the four suggested
landmark selections (Tables 2 and 3).

The lowest variance is seen for landmark selection 2,
having a mean variance = 0.54 mm. Figure 6 illustrates
the variation of the PDM from landmark selection 2

Figure 5 Landmark selections 1,2,3, and 4. Selections 1 and 2: Selected for having low mean error and variation with focus on capturing central
and all facial features, respectively. Selection 3: Mean error below 1 mm. Selection 4: Operator standard deviation below 0.5 mm.
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compared to the original PDM (based on all landmarks).
Annotated points with relatively small inter-operator vari-
ation, was not estimated better automatically. However,
points with large inter-operator variation was better esti-
mated. Based on these results we conclude that a reduced
set of the original 73 landmarks provides optimal anno-
tation. It is also noted that landmark selection 2, which
consists of 14 landmarks, results in a more compact model
and improves estimation of 16 of the 73 landmarks com-
pared to the manual operator annotations, see (Table 3).

Discussion
To the best of our knowledge, this is first study to address
the variation of human-annotated 3D facial landmarks.
Understanding the variation of manual annotations is
important as components of registration, recognition,
and machine learning are influenced by manual anno-
tation errors. However, the current literature is sparse
in area pertaining to 3D facial morphology and varia-
tion. We expect that an increase in the availability, accu-
racy, user friendliness (i.e. fewer operator demands) of
3D imaging scanners will probe the use of shape models
in clinical diagnostics, as seen for example in orthope-
dic surgery [24]. However, to assess the putative clinical
impact of such tools, it is important to understand the
variability embedded in manual annotation. Our analy-
sis focused on facial morphology, suggests a procedure to
retrieve a dense correspondence mesh of the face with low
variance and minimal human operator assigned annota-
tion points.

We first address the variability of 73 facial 3D land-
marks, and that the variability is highly correlated with
specific annotation point. As expected, landmarks that are
easier to define in consensus (here, landmark of the pupils)
have the lowest inter- and intra-operator variability. More
leniently defined landmarks such as the points defining
the jaw line are associated with the highest variation. The
portray itself was associated with relative low annotations
variability, thus is seems that variables associated with the
portray such as age and gender does not seem to influence
the annotations.

One obvious application of the annotated points is to
identify minor facial abnormalities,that may assist in the
clinical diagnosis of syndromes. Such abnormalities can
be identified by using absolute measures or the ratio
between manually annotated landmarks, or by using a
dense correspondence mesh. Our study supports the

Table 2 Dense point mean variance

Landmark selections Full 1 2 3 4

Mean variance 1.92 0.62 0.54 1.03 0.71

Bold number indicates the lowest mean variance.

Table 3 Selection 2’ prediction error and inter-operator
error of all 73 landmarks

Annotation point In seletion Operator error Scheme 2 error

1 4 3.23 4.87

2 4 1.51 1.69

3 2;3;4 0.98 0.98

4 3;4 0.98 1.70

5 1;4 1.48 2.22

6 4 1.19 1.77

7 3;4 0.99 1.67

8 4 1.35 2.20

9 4 2.96 6.71

10 4 1.36 2.23

11 4 1.03 1.57

12 4 1.26 1.97

13 1;4 1.47 2.31

14 4 1.00 1.55

15 2;3;4 0.99 1.03

16 4 1.44 1.95

17 1;3;4 0.93 2.16

18 3;4 0.31 1.31

19 3;4 0.29 1.48

20 3;4 0.44 1.04

21 1;3 0.93 1.85

22 3;4 0.34 0.81

23 3;4 0.26 0.91

24 3;4 0.35 1.12

25 1;4 1.15 2.48

26 3;4 0.38 0.92

27 3;4 0.27 1.05

28 3;4 0.45 0.82

29 1 1.19 1.07

30 3;4 0.40 1.07

31 3;4 0.31 1.11

32 3;4 0.42 1.40

33 1;2;3;4 0.09 0.17

34 1;2;3;4 0.11 0.39

35 3;4 0.95 1.46

36 2.24 2.05

37 1 2.04 2.23

38 4 1.45 2.35

39 1.79 1.40

40 4 1.26 1.48

41 1.86 1.41

42 1;4 1.38 1.84

43 1.68 2.10

44 2.25 1.91
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Table 3 Selection 2’ prediction error and inter-operator
error of all 73 landmarks (Continued)

45 3;4 0.92 1.77

46 1;2;4 1.24 1.26

47 1;2;4 1.30 1.30

48 4 1.03 1.79

49 1;3;4 0.82 0.96

50 1;2;3;4 0.69 0.71

51 1;3;4 0.80 1.26

52 4 1.07 1.53

53 1;2;4 1.28 1.26

54 4 1.04 1.95

55 1;2;3;4 0.88 0.91

56 4 1.03 1.69

57 3;4 0.79 0.94

58 1;2;3;4 0.69 0.69

59 3;4 0.83 1.04

60 3;4 0.76 1.07

61 1;2;3;4 0.69 0.79

62 3;4 0.75 0.82

63 1;2;4 2.14 4.77

64 5.68 4.04

65 5.72 4.13

66 4.85 3.75

67 3.46 3.03

68 1;2;4 1.96 1.97

69 3.38 2.95

70 4.41 3.33

71 5.45 4.92

72 5.75 4.57

73 1;2;4 2.11 7.09

preferential use of dense correspondence mesh for identi-
fication of minor abnormalities, as this facilitates the use
of landmarks/points not manually annotated and thus a
larger data set. In a clinical setting, different operators
will be used, and although such operators will be ideally
trained, the variability will lead to increased signal to noise
ratio and reduced analytical power. Therefore, we suggest
an approach to limit the number of annotation points,
which minimize variability and is able capture facial fea-
tures. This approach uses 14 landmarks to create a dense
correspondence mesh with a point mean variance of 0.54.
Further, this approach shows less variability in 16 of the
manually annotated points not included creating the cor-
respondence mesh. Using fewer annotation points will
decrease the operator time, thus improving feasibility of
use.

There is one obvious limitation with regard to general-
izability of the study. We used subjects that are Caucasian
with Scandinavian background, thus we cannot exclude
that the variability of the annotation landmarks is different
from other ethnicities, e.g. the texture of blonde eyebrows
on light skin may be difficult to separate, whereas dark
eyebrows may not. One other limitation of our study is
that annotation was performed only two times, thus we
cannot address whether additional repeat measure (>2)
would notable influence the annotation variation.

Conclusion
We found that the variability of manual annotated facial
landmarks, was associated with the specific landmark, and
did not seem to be influence by the portray, i.e. gender
and age, or the (trained) operator. Using 14 of the 73 land-
marks we were able to decreasing the mean variance and
create a dense correspondence mesh capturing all facial
feature.

Figure 6 Visualization of variance. Variance is displayed in mm of one standard deviation.
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