16 research outputs found

    psychopraxis / Einsatz von Antipsychotika bei Parkinson-Psychose und Multimorbidität : Überblick und Kasuistik

    No full text
    Parkinson-Patienten sind häufig multimorbid und haben ein hohes Risiko, psychotische Symptome oder ein Delir zu entwickeln. Die Therapie der psychotischen Symptome mit Antipsychotika ist mit Einschränkungen behaftet. Wir berichten über einen 62-jährigen Patienten, welcher im Zuge des Konsiliardienstes während zwei Aufenthalten an der Unfallchirurgie mehrfach begutachtet wurde.Parkinsons disease patients frequently suffer from numerous comorbid conditions and have a high risk of developing psychotic symptoms or delirium. Treatment of psychotic symptoms in Parkinsons patients is restricted by side effects. We present a 62-year-old patient who was seen several times by psychiatrists and neurologists at the department for trauma surgery.(VLID)355916

    Wiener klinische Wochenschrift / Assessment of individual cognitive changes after deep brain stimulation surgery in Parkinsons disease using the Neuropsychological Test Battery Vienna short version

    No full text
    Long-term therapy of Parkinsons disease with LDOPA is associated with a high risk of developing motor fluctuations and dyskinesia. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) can improve these motor complications. Although the positive effect on motor symptoms has been proven, postoperative cognitive decline has been documented. To tackle the impact of DBS on cognition, 18 DBS patients were compared to 25 best medically treated Parkinsons patients, 24 patients with mild cognitive impairment (MCI) and 12 healthy controls using the Neuropsychological Test Battery Vienna short version (NTBV-short) for cognitive outcome 12 months after the first examination. Reliable change index methodology was used. Roughly 10% of DBS patients showed cognitive decline mainly affecting the domains attention and executive functioning (phonemic fluency). Further research is needed to identify the mechanisms that lead to improvement or deterioration of cognitive functions in individual cases.(VLID)355129

    Comparison of fMRI coregistration results between human experts and software solutions in patients and healthy subjects

    No full text
    Functional magnetic resonance imaging (fMRI) performed by echo-planar imaging (EPI) is often highly distorted, and it is therefore necessary to coregister the functional to undistorted anatomical images, especially for clinical applications. This pilot study provides an evaluation of human and automatic coregistration results in the human motor cortex of normal and pathological brains. Ten healthy right-handed subjects and ten right-handed patients performed simple right hand movements during fMRI. A reference point chosen at a characteristic anatomical location within the fMRI sensorimotor activations was transferred to the high resolution anatomical MRI images by three human fMRI experts and by three automatic coregistration programs. The 3D distance between the median localizations of experts and programs was calculated and compared between patients and healthy subjects. Results show that fMRI localization on anatomical images was better with the experts than software in 70% of the cases and that software performance was worse for patients than healthy subjects (unpaired t-test: P=0.040). With 45.6 mm the maximum disagreement between experts and software was quite large. The inter-rater consistency was better for the fMRI experts compared to the coregistration programs (ANOVA: P=0.003). We conclude that results of automatic coregistration should be evaluated carefully, especially in case of clinical application

    Improving sensitivity, specificity, and reproducibility of individual brainstem activation

    No full text
    Functional imaging of the brainstem may open new avenues for clinical diagnostics. However, for reliable assessments of brainstem activation, further efforts improving signal quality are needed. Six healthy subjects performed four repeated functional magnetic resonance\ua0imaging (fMRI) sessions on different days with jaw clenching as a motor task to elicit activation in the trigeminal motor nucleus. Functional images were acquired with a 7 T MR scanner using an optimized multiband EPI sequence. Activation measures in the trigeminal nucleus and a control region were assessed using different physiological noise correction methods (aCompCor and RETROICOR-based approaches with variable numbers of regressors) combined with cerebrospinal fluid or brainstem masking. Receiver-operating characteristic analyses accounting for sensitivity and specificity, activation overlap analyses to estimate the reproducibility between sessions, and intraclass correlation analyses (ICC) for testing reliability between subjects and sessions were used to systematically compare the physiological noise correction approaches. Masking the brainstem led to increased activation in the target ROI and resulted in higher values for the area under the curve (AUC) as a combined measure for sensitivity and specificity. With the highest values for AUC, activation overlap, and ICC, the most favorable physiological noise correction method was to control for the cerebrospinal fluid time series (aCompCor with one regressor). Brainstem motor nuclei activation can be reliably identified using high-field fMRI with optimized acquisition and processing strategies—even on single-subject level. Applying specific physiological noise correction methods improves reproducibility and reliability of brainstem activation encouraging future clinical applications

    Early dysfunctions of fronto-parietal praxis networks in Parkinsons disease

    No full text
    In Parkinsons disease (PD) the prevalence of apraxia increases with disease severity implying that patients in early stages may already have subclinical deficits. The aim of this exploratory fMRI study was to investigate if subclinical aberrations of the praxis network are already present in patients with early PD. In previous functional imaging literature only data on basal motor functions in PD exists. Thirteen patients with mild parkinsonian symptoms and without clinically diagnosed apraxia and 14 healthy controls entered this study. During fMRI participants performed a pantomime task in which they imitated the use of visually presented objects. Patients were measured ON and OFF dopaminergic therapy to evaluate a potential medication effect on praxis abilities and related brain functions. Although none of the patients was apraxic according to De Renzi ideomotor scores (range 6272), patients OFF showed significantly lower praxis scores than controls. Patients exhibited significant hyperactivation in left fronto-parietal core areas of the praxis network. Frontal activations were clearly dominant in patients and were correlated with lower individual praxis scores. We conclude that early PD patients already show characteristic signs of praxis network dysfunctions and rely on specific hyperactivations to avoid clinically evident apraxic symptoms. Subclinical apraxic deficits were shown to correlate with an activation shift from left parietal to left frontal areas implying a prospective individual imaging marker for incipient apraxia.(VLID)353391

    Limb-kinetic apraxia affects activities of daily living in Parkinson's disease: a multi-center study

    No full text
    BACKGROUND AND PURPOSE Impaired dexterity (fine hand movements) is often present in Parkinson's disease (PD), even at early to moderate disease stages. It has a detrimental impact on activities of daily living (ADL) such as buttoning, contributing to reduced quality of life. Limb-kinetic apraxia, a loss of the ability to make precise, independent but coordinated finger and hand movements, may contribute to impaired dexterity even more than bradykinesia per se. However, the impact of limb-kinetic apraxia on ADL remains controversial. Our aim was to identify the strongest predictor of buttoning and unbuttoning in PD. It was hypothesized that coin rotation (a surrogate of limb-kinetic apraxia) represents the most important determinant. METHODS Sixty-four right-handed, early to moderate PD patients were recruited from three movement disorder centers (Hoehn andYahr stages 1-3). Buttoning, unbuttoning and coin rotation (right and left hand) represented the target tasks. Motor impairment was assessed according to the Unified Parkinson's Disease Rating Scale. RESULTS Multiple linear regression analysis showed that coin rotation with the right hand was the only significant predictor of buttoning (P < 0.001) and unbuttoning (P = 0.002). Notably, measures of bradykinesia or overall motor impairment did not represent significant predictors. CONCLUSIONS Constituting the novel key finding, limb-kinetic apraxia seems to be particularly relevant for ADL requiring dexterity skills in PD, even at early to moderate disease stages. Our results prompt research into the pathophysiological background and therapeutic options to treat limb-kinetic apraxia. The simple coin rotation test provides valuable information about ADL-related dexterity skills

    Finger dexterity deficits in Parkinson's disease and somatosensory cortical dysfunction

    Full text link
    INTRODUCTION The patho-physiological basis for finger dexterity deficits in Parkinson's disease (PD) is controversial. Previously, bradykinesia was regarded as the major mechanism. However, recent research suggested limb-kinetic apraxia as an important component of impaired fine motor skills in PD. In contrast to bradykinesia, limb-kinetic apraxia only marginally responds to dopaminergic treatment. Here we investigate the novel hypothesis that the dexterity deficits are related to an intrinsic dysfunction of primary somatosensory cortex (S1), which is not reversible by dopaminergic medication. METHODS Applying a standard and approved dexterity task (coin rotation), brain activation networks were investigated using functional magnetic resonance imaging in PD patients both ON and OFF medication and matched healthy controls. RESULTS PD patients both ON and OFF medication showed impaired S1 activation relative to controls (p < 0.05; region of interest based analysis). The impaired S1 activation remained unchanged by dopaminergic medication. Despite the considerable clinical deficit, no other brain area showed impaired activation. In contrast, structures of the basal ganglia--motor cortex loop responded to dopaminergic medication. Behaviorally, dexterity performance both ON and OFF was significantly (p < 0.05) reduced relative to controls. CONCLUSIONS Our results provide first evidence that dexterity deficits in PD are related to an S1 dysfunction which is insensitive to dopaminergic treatment

    Between- and within-site variability of fMRI localizations

    Full text link
    This study provides first data about the spatial variability of fMRI sensorimotor localizations when investigating the same subjects at different fMRI sites. Results are comparable to a previous patient study. We found a median between-site variability of about 6 mm independent of task (motor or sensory) and experimental standardization (high or low). An intraclass correlation coefficient analysis using data quality measures indicated a major influence of the fMRI site on variability. In accordance with this, within-site localization variability was considerably lower (about 3 mm). We conclude that the fMRI site is a considerable confound for localization of brain activity. However, when performed by experienced clinical fMRI experts, brain pathology does not seem to have a relevant impact on the reliability of fMRI localizations
    corecore