533 research outputs found

    An analysis of RNG based turbulence models for homogeneous shear flow

    Get PDF
    In a recent paper, the authors compared the performance of a variety of turbulence models including the k-epsilon model and the second-order closure model based on Renormalization Group (RNG) Methods. The performance of these RNG models in homogeneous turbulent shear flow was found to be quite poor, apparently due to the value of the constant C(sub epsilon1) in the modeled dissipation rate equation which was substantially lower than its traditional value. However, recently a correction has been made in the RNG based calculation of C(sub epsilon1). It is shown that with the new value of C(sub epsilon1), the performance of the RNG k-epsilon model is substantially improved. On the other hand, while the predictions of the revised RNG second-order closure model are better, some lingering problems still remain which can be easily remedied by the addition of higher order terms

    On the effects of powder morphology on the post-comminution ballistic strength of ceramics

    Get PDF
    In this paper in order to try and elucidate the effects of particle morphology on ballistic response of comminuted systems, a series of experiments were carried out via the use of powder compacts with differing initial particle morphologies. This approach provided a route to readily manufacture comminuted armour analogues with significantly different microstructural compositions. In this study pre-formed `fragmented-ceramic' analogues were cold-pressed using plasma-spray alumina powders with two differing initial morphologies (angular and spherical). These compacts were then impacted using 7.62-mm FFV AP (Förenade Fabriksverken Armour Piercing) rounds with the subsequent depth-of-penetration of the impacting projectile into backing Al 6082 blocks used to provide a measure of pressed ceramic ballistic response. When material areal density was accounted for via differing ballistic efficiency calculations a strong indication of particle morphology influence on post-impact ceramic properties was apparent. These results were reinforced by a separate small series of plate-impact experiments, whose results indicated that powder morphology had a strong influence on the nature of compact collapse

    Economic inequalities in the effectiveness of a primary care intervention for depression and suicidal ideation.

    No full text
    BACKGROUND: Economic disadvantage is associated with depression and suicide. We sought to determine whether economic disadvantage reduces the effectiveness of depression treatments received in primary care. METHODS: We conducted differential-effects analyses of the Prevention of Suicide in Primary Care Elderly: Collaborative Trial, a primary-care-based randomized, controlled trial for late-life depression and suicidal ideation conducted between 1999 and 2001, which included 514 patients with major depression or clinically significant minor depression. RESULTS: The intervention effect, defined as change in depressive symptoms from baseline, was stronger among persons reporting financial strain at baseline (differential effect size = -4.5 Hamilton Depression Rating Scale points across the study period [95% confidence interval = -8.6 to -0.3]). We found similar evidence for effect modification by neighborhood poverty, although the intervention effect weakened after the initial 4 months of the trial for participants residing in poor neighborhoods. There was no evidence of substantial differences in the effectiveness of the intervention on suicidal ideation and depression remission by economic disadvantage. CONCLUSIONS: Economic conditions moderated the effectiveness of primary-care-based treatment for late-life depression. Financially strained individuals benefited more from the intervention; we speculate this was because of the enhanced treatment management protocol, which led to a greater improvement in the care received by these persons. People living in poor neighborhoods experienced only temporary benefit from the intervention. Thus, multiple aspects of economic disadvantage affect depression treatment outcomes; additional work is needed to understand the underlying mechanisms

    Bacterial survival following shock compression in the GigaPascal range

    Get PDF
    The possibility that life can exist within previously unconsidered habitats is causing us to expand our understanding of potential planetary biospheres. Significant populations of living organisms have been identified at depths extending up to several km below the Earth's surface; whereas laboratory experiments have shown that microbial species can survive following exposure to GigaPascal (GPa) pressures. Understanding the degree to which simple organisms such as microbes survive such extreme pressurization under static compression conditions is being actively investigated. The survival of bacteria under dynamic shock compression is also of interest. Such studies are being partly driven to test the hypothesis of potential transport of biological organisms between planetary systems. Shock compression is also of interest for the potential modification and sterilization of foodstuffs and agricultural products. Here we report the survival of Shewanella oneidensis bacteria exposed to dynamic (shock) compression. The samples examined included: (a) a "wild type" (WT) strain and (b) a "pressure adapted" (PA) population obtained by culturing survivors from static compression experiments to 750 MPa. Following exposure to peak shock pressures of 1.5 and 2.5 GPa the proportion of survivors was established as the number of colony forming units (CFU) present after recovery to ambient conditions. The data were compared with previous results in which the same bacterial samples were exposed to static pressurization to the same pressures, for 15 minutes each. The results indicate that shock compression leads to survival of a significantly greater proportion of both WT and PA organisms. The significantly shorter duration of the pressure pulse during the shock experiments (2-3 μs) likely contributes to the increased survival of the microbial species. One reason for this can involve the crossover from deformable to rigid solid-like mechanical relaxational behavior that occurs for bacterial cell walls on the order of seconds in the time dependent strain rate

    Tolerance of Artemia to static and shock pressure loading

    Get PDF
    Hydrostatic and hydrodynamic pressure loading has been applied to unicellular organisms for a number of years due to interest from food technology and extremophile communities. There is also an emerging interest in the response of multicellular organisms to high pressure conditions. Artemia salina is one such organism. Previous experiments have shown a marked difference in the hatching rate of these organisms after exposure to different magnitudes of pressure, with hydrostatic tests showing hatching rates at pressures up to several GPa, compared to dynamic loading that resulted in comparatively low survival rates at lower pressure magnitudes. In order to begin to investigate the origin of this difference, the work presented here has focussed on the response of Artemia salina to (quasi) one-dimensional shock loading. Such experiments were carried out using the plate-impact technique in order to create a planar shock front. Artemia cysts were investigated in this manner along with freshly hatched larvae (nauplii). The nauplii and cysts were observed post-shock using optical microscopy to detect motility or hatching, respectively. Hatching rates of 18% were recorded at pressures reaching 1.5 GPa, as determined with the aid of numerical models. Subjecting Artemia to quasi-one-dimensional shock loading offers a way to more thoroughly explore the shock pressure ranges these organisms can survive

    On the shock behaviour and response of Ovis Aries vertebrae

    Get PDF
    When investigating a biological system during shock loading, it is best practice to isolate different components to fully comprehend each individual part [1,2] before building up the system as a whole. Due to the high acoustic impedance of bone in comparison to other biological tissues [3] the majority of the shock will be transmitted into this medium, and as such can cause large amounts of damage to other parts of the body potentially away from the impact area

    The design of a GUI paradigm based on tablets, two-hands, and transparency

    Full text link
    An experimental GUI paradigm is presented which is based on the design goals of maximizing the amount of screen used for application data, reducing the amount that the UI diverts visual attentions from the application data, and increasing the quality of input. In pursuit of these goals, we integrated the non-standard UI technologies of multi-sensor tablets, toolglass, transparent UI components, and marking menus. We describe a working prototype of our new para-digm, the rationale behind it and our experiences introduc-ing it into an existing application. Finally, we presents some ot the lessons learned: prototypes are useful to break the barriers imposed by conventional GUI design and some of their ideas can still be retrofitted seamlessly into products. Furthermore, the added functionality is not measured only in terms of user performance, but also by the quality of interaction, which allows artists to create new graphic vocabularies and graphic styles

    Investigation of the high-strain rate (shock and ballistic) response of the elastomeric tissue simulant Perma-Gel®

    Get PDF
    For both ethical and practical reasons accurate tissue simulant materials are essential for ballistic testing applications. A wide variety of different materials have been previously adopted for such roles, ranging from gelatin to ballistics soap. However, while often well characterised quasi-statically, there is typically a paucity of information on the high strain-rate response of such materials in the literature. Here, building on previous studies by the authors on other tissue analogues, equation-of-state data for the elastomeric epithelial/muscular simulant material Perma-Gel® is presented, along with results from a series of ballistic tests designed to illustrate its impact-related behaviour. Comparison of both hydrodynamic and ballistic behaviour to that of comparable epithelial tissues/analogues (Sylgard® and porcine muscle tissue) has provided an insight into the applicability of both Perma-Gel® and, more generally, monolithic simulants for ballistic testing purposes. Of particular note was an apparent link between the high strain-rate compressibility (evidenced in the Hugoniot relationship in the Us-up plane) and subsequent ballistic response of these materials. Overall, work conducted in this study highlighted the importance of fully characterising tissue analogues – with particular emphasis on the requirement to understand the behaviour of such analogues under impact as part of a system as well as individually

    Chemical and physical variations of cannabis smoke from a variety of cannabis samples in New Zealand

    Get PDF
    Studies have compared the chemical properties of tobacco smoke to those of cannabis smoke, with the objective of identifying the chemical attributes responsible for the mutagenicity and carcinogenicity of cannabis smoke. Comparative studies have included small sample sizes and produced conflicting results. The aim of this study was to assess the major chemical and physical variations of cannabis smoke across a range of cannabis samples of different potencies and origins, sourced from the illegal market in New Zealand. Twelve cannabis samples were studied ranging from 1.0% to 13.4% delta-9-tetrahydrocannabinol (D9THC) content. A smoking machine was used to smoke “joints” (cannabis cigarettes) and the chemical/physical properties of the smoke assessed. The chemical constituents of the smoke extracts were analysed by gas chromatography/mass spectrometry. A range of different chemical constituents (in addition to D9THC) were identified and their concentrations estimated. Terpenoids were identified as the major variable in cannabis smoke, showing a 40-fold range in total terpenoid content. Analysis of the total particulate matter showed that significantly different levels of particulate matter were produced between the different cannabis samples, ranging from 14.6 to 66.3 mg/g of cannabis smoked. The D9THC delivery efficiency during smoking was also investigated and produced consistent results showing a mean and median of 12.6% and 10.8%, respectively, of the theoretically available D9THC (ranging from 7.2% to 28.0%)
    corecore