1,394 research outputs found

    Preference for Risk Management Information Sources: Implications for Extension and Outreach Programming

    Get PDF
    This article examines farmers’ preferences for various risk management information sources. Our results suggest that information from risk management experts, in-depth materials studied on their own, and popular press outlets tend to be preferred and are ranked highly by producers. Using a regression model to investigate farmer/farm attributes that affect preference for a particular risk management information source, we find that younger farmers with college education, higher leverage, assets greater than $1 million, risk-loving attitudes, and who have used professional services (marketing consultants) tend to prefer information from risk management experts, the Internet, and marketing clubs/other producers. On the other hand, producers who prefer self-study of educational materials and popular press information sources tend to be younger, with lower leverage levels, and have used fewer professional services.crop insurance, extension, information sources, outreach, risk management, Risk and Uncertainty,

    Gas-Diffusion Electrodes for Carbon-Dioxide Reduction: A New Paradigm

    Get PDF
    Significant advances have been made in recent years discovering new electrocatalysts and developing a fundamental understanding of electrochemical CO_2 reduction processes. This field has progressed to the point that efforts can now focus on translating this knowledge toward the development of practical CO_2 electrolyzers, which have the potential to replace conventional petrochemical processes as a sustainable route to produce fuels and chemicals. In this Perspective, we take a critical look at the progress in incorporating electrochemical CO_2 reduction catalysts into practical device architectures that operate using vapor-phase CO_2 reactants, thereby overcoming intrinsic limitations of aqueous-based systems. Performance comparison is made between state-of-the-art CO_2 electrolyzers and commercial H_2O electrolyzers—a well-established technology that provides realistic performance targets. Beyond just higher rates, vapor-fed reactors represent new paradigms for unprecedented control of local reaction conditions, and we provide a perspective on the challenges and opportunities for generating fundamental knowledge and achieving technological progress toward the development of practical CO_2 electrolyzers

    Surface Engineering of 3D Gas Diffusion Electrodes for High‐Performance H2 Production with Nonprecious Metal Catalysts

    Get PDF
    In this work, a methodology is demonstrated to engineer gas diffusion electrodes for nonprecious metal catalysts. Highly active transition metal phosphides are prepared on carbon‐based gas diffusion electrodes with low catalyst loadings by modifying the O/C ratio at the surface of the electrode. These nonprecious metal catalysts yield extraordinary performance as measured by low overpotentials (51 mV at −10 mA cm−2), unprecedented mass activities (>800 A g−1 at 100 mV overpotential), high turnover frequencies (6.96 H2 s−1 at 100 mV overpotential), and high durability for a precious metal‐free catalyst in acidic media. It is found that a high O/C ratio induces a more hydrophilic surface directly impacting the morphology of the CoP catalyst. The improved hydrophilicity, stemming from introduced oxyl groups on the carbon electrode, creates an electrode surface that yields a well‐distributed growth of cobalt electrodeposits and thus a well‐dispersed catalyst layer with high surface area upon phosphidation. This report demonstrates the high‐performance achievable by CoP at low loadings which facilitates further cost reduction, an important part of enabling the large‐scale commercialization of non‐platinum group metal catalysts. The fabrication strategies described herein offer a pathway to lower catalyst loading while achieving high efficiency and promising stability on a 3D electrode

    Promoter effects of alkali metal cations on the electrochemical reduction of carbon dioxide

    Get PDF
    The electrochemical reduction of CO_2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO_2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably for HCOO–, C_2H_4, and C_2H_5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO_2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. The observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size
    • …
    corecore