43 research outputs found
An Ecological Approach to Prospective and Retrospective Timing of Long Durations: A Study Involving Gamers
To date, most studies comparing prospective and retrospective timing have failed to use long durations and tasks with a certain degree of ecological validity. The present study assessed the effect of the timing paradigm on playing video games in a “naturalistic environment” (gaming centers). In addition, as it involved gamers, it provided an opportunity to examine the effect of gaming profile on time estimation. A total of 116 participants were asked to estimate prospectively or retrospectively a video game session lasting 12, 35 or 58 minutes. The results indicate that time is perceived as longer in the prospective paradigm than in the retrospective one, although the variability of estimates is the same. Moreover, the 12-minute session was perceived as longer, proportionally, than the 35- and 58-minute sessions. The study also revealed that the number of hours participants spent playing video games per week was a significant predictor of time estimates. To account for the main findings, the differences between prospective and retrospective timing are discussed in quantitative terms using a proposed theoretical framework, which states that both paradigms use the same cognitive processes, but in different proportions. Finally, the hypothesis that gamers play more because they underestimate time is also discussed
Do Changes in the Pace of Events Affect One-Off Judgments of Duration?
Five experiments examined whether changes in the pace of external events influence people’s judgments of duration. In Experiments 1a–1c, participants heard pieces of music whose tempo accelerated, decelerated, or remained constant. In Experiment 2, participants completed a visuo-motor task in which the rate of stimulus presentation accelerated, decelerated, or remained constant. In Experiment 3, participants completed a reading task in which facts appeared on-screen at accelerating, decelerating, or constant rates. In all experiments, the physical duration of the to-be-judged interval was the same across conditions. We found no significant effects of temporal structure on duration judgments in any of the experiments, either when participants knew that a time estimate would be required (prospective judgments) or when they did not (retrospective judgments). These results provide a starting point for the investigation of how temporal structure affects one-off judgments of duration like those typically made in natural settings
SARS-CoV-2 Viremia is Associated with COVID-19 Severity and Predicts Clinical Outcomes
Background: SARS-CoV-2 viral RNA (vRNA) is detected in the bloodstream of some patients with COVID-19 (“RNAemia”) but it is not clear whether this RNAemia reflects viremia (i.e., virus particles) and how RNAemia/viremia is related to host immune responses and outcomes.
Methods: SARS-CoV-2 vRNA was quantified by ultra-sensitive RT-PCR in plasma samples (0.5-1.0 ml) from observational cohorts of 51 COVID-19 patients including 9 outpatients, 19 hospitalized (non-ICU), and 23 ICU patients, and vRNA levels compared with cross-sectional indices of COVID-19 severity and prospective clinical outcomes. We used multiple imaging methods to visualize virions in pelleted plasma.
Results: SARS-CoV-2 vRNA was detected in plasma of 100%, 52.6% and 11.1% of ICU, non-ICU, and outpatients respectively. Virions were detected in plasma pellets by electron tomography and immunostaining. Plasma vRNA levels were significantly higher in ICU > non-ICU > outpatients (p6,000 copies/ml was strongly associated with mortality (HR: 10.7). Levels of vRNA were significantly associated with several inflammatory biomarkers (p<0.01) but not with plasma neutralizing antibody titers (p=0.8).
Conclusions: Visualization of virus particles in plasma indicates that SARS-CoV-2 RNAemia is due, at least in part, to viremia. The levels of SARS-CoV-2 RNAemia quantified by ultrasensitive RT-PCR correlate strongly with disease severity, patient outcome and specific inflammatory biomarkers but not neutralizing antibody titers
Vectors Based on Modified Vaccinia Ankara Expressing Influenza H5N1 Hemagglutinin Induce Substantial Cross-Clade Protective Immunity
New highly pathogenic H5N1 influenza viruses are continuing to evolve with a potential threat for an influenza pandemic. So far, the H5N1 influenza viruses have not widely circulated in humans and therefore constitute a high risk for the non immune population. The aim of this study was to evaluate the cross-protective potential of the hemagglutinins of five H5N1 strains of divergent clades using a live attenuated modified vaccinia Ankara (MVA) vector vaccine.The replication-deficient MVA virus was used to express influenza hemagglutinin (HA) proteins. Specifically, recombinant MVA viruses expressing the HA genes of the clade 1 virus A/Vietnam/1203/2004 (VN/1203), the clade 2.1.3 virus A/Indonesia/5/2005 (IN5/05), the clade 2.2 viruses A/turkey/Turkey/1/2005 (TT01/05) and A/chicken/Egypt/3/2006 (CE/06), and the clade 2.3.4 virus A/Anhui/1/2005 (AH1/05) were constructed. These experimental live vaccines were assessed in a lethal mouse model. Mice vaccinated with the VN/1203 hemagglutinin-expressing MVA induced excellent protection against all the above mentioned clades. Also mice vaccinated with the IN5/05 HA expressing MVA induced substantial protection against homologous and heterologous AH1/05 challenge. After vaccination with the CE/06 HA expressing MVA, mice were fully protected against clade 2.2 challenge and partially protected against challenge of other clades. Mice vaccinated with AH1/05 HA expressing MVA vectors were only partially protected against homologous and heterologous challenge. The live vaccines induced substantial amounts of neutralizing antibodies, mainly directed against the homologous challenge virus, and high levels of HA-specific IFN-γ secreting CD4 and CD8 T-cells against epitopes conserved among the H5 clades and subclades.The highest level of cross-protection was induced by the HA derived from the VN/1203 strain, suggesting that pandemic H5 vaccines utilizing MVA vector technology, should be based on the VN/1203 hemagglutinin. Furthermore, the recombinant MVA-HA-VN, as characterized in the present study, would be a promising candidate for such a vaccine