443 research outputs found
Hepatitis C virus infection and related liver disease: the quest for the best animal model
Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma (HCC) making the virus the most common cause of liver failure and transplantation. HCV is estimated to chronically affect 130 million individuals and to lead to more than 350,000 deaths per year worldwide. A vaccine is currently not available. The recently developed direct acting antivirals (DAAs) have markedly increased the efficacy of the standard of care but are not efficient enough to completely cure all chronically infected patients and their toxicity limits their use in patients with advanced liver disease, co-morbidity or transplant recipients. Because of the host restriction, which is limited to humans and non-human primates, in vivo study of HCV infection has been hampered since its discovery more than 20 years ago. The chimpanzee remains the most physiological model to study the innate and adaptive immune responses, but its use is ethically difficult and is now very restricted and regulated. The development of a small animal model that allows robust HCV infection has been achieved using chimeric liver immunodeficient mice, which are therefore not suitable for studying the adaptive immune responses. Nevertheless, these models allowed to go deeply in the comprehension of virus-host interactions and to assess different therapeutic approaches. The immunocompetent mouse models that were recently established by genetic humanization have shown an interesting improvement concerning the study of the immune responses but are still limited by the absence of the complete robust life cycle of the virus. In this review, we will focus on the relevant available animal models of HCV infection and their usefulness for deciphering the HCV life cycle and virus-induced liver disease, as well as for the development and evaluation of new therapeutics. We will also discuss the perspectives on future immunocompetent mouse models and the hurdles to their development
Liver cell circuits and therapeutic discovery for advanced liver disease and cancer
Hepatocellular carcinoma (HCC) is a major global health challenge with rising incidence. Despite the previous approval of several novel therapeutic approaches, HCC remains the second common cause of cancer-related death worldwide. The vast majority of HCCs arises in the context of chronic fibrotic liver diseases caused by viral or metabolic etiologies. In patients with advanced liver disease the risk of HCC persists even after viral cure or control of infection. Moreover, given the change in the lifestyle and increase of obesity and metabolic disorders, HCC incidence is predicted to drastically augment in the next decade. Early detection, improvement of the screening method in patient at-risk and development of chemopreventive strategies are therefore urgently needed to reduce HCC risk. This review summarizes the major challenges in the identification of patient at risk for HCC and the emergent strategies for HCC prevention to improve patients’ outcome
Hepatitis C Virus Is a Weak Inducer of Interferon Alpha in Plasmacytoid Dendritic Cells in Comparison with Influenza and Human Herpesvirus Type-1
Plasmacytoid dendritic cells (pDCs) are responsible for the production of type I IFN during viral infection. Viral elimination by IFN-α-based therapy in more than 50% of patients chronically infected with hepatitis C virus (HCV) suggests a possible impairment of production of endogenous IFN-α by pDCs in infected individuals. In this study, we investigated the impact of HCV on pDC function. We show that exposure of pDCs to patient serum- and cell culture-derived HCV resulted in production of IFN-α by pDCs isolated from some donors, although this production was significantly lower than that induced by influenza and human herpesvirus type 1 (HHV-1). Using specific inhibitors we demonstrate that endocytosis and endosomal acidification were required for IFN-α production by pDCs in response to cell culture-derived HCV. HCV and noninfectious HCV-like particles inhibited pDC-associated production of IFN-α stimulated with Toll-like receptor 9 (TLR9) agonists (CpG-A or HHV-1) but not that of IFN-α stimulated with TLR7 agonists (resiquimod or influenza virus). The blockade of TLR9-mediated production of IFN-α, effective only when pDCs were exposed to virus prior to or shortly after CpG-A stimulation, was already detectable at the IFN-α transcription level 2 h after stimulation with CpG-A and correlated with down-regulation of the transcription factor IRF7 expression and of TLR9 expression. In conclusion, rapidly and early occurring particle–host cell protein interaction during particle internalization and endocytosis followed by blockade of TLR9 function could result in less efficient sensing of HCV RNA by TLR7, with impaired production of IFN-α. This finding is important for our understanding of HCV-DC interaction and immunopathogenesis of HCV infection
Hepatitis B virus receptors and molecular drug targets
Chronic hepatitis B virus (HBV) infection is a leading cause of liver disease worldwide. Virus-induced diseases include cirrhosis, liver failure and hepatocellular carcinoma. Current therapeutic strategies may at best control infection without reaching cure. Complementary antiviral strategies aimed at viral cure are therefore urgently needed. HBV entry is the first step of the infection cycle, which leads to the formation of cccDNA and the establishment of chronic infection. Viral entry may thus represent an attractive target for antiviral therapy. This review summarizes the molecular virology and cell biology of HBV entry, including the discovery and development of new HBV entry inhibitors, and discusses their potential in future treatment of HBV infection
The scientific basis of combination therapy for chronic hepatitis B functional cure
Functional cure of chronic hepatitis B (CHB) — or hepatitis B surface antigen (HBsAg) loss after 24 weeks off therapy — is now the goal of treatment, but is rarely achieved with current therapy. Understanding the hepatitis B virus (HBV) life cycle and immunological defects that lead to persistence can identify targets for novel therapy. Broadly, treatments fall into three categories: those that reduce viral replication, those that reduce antigen load and immunotherapies. Profound viral suppression alone does not achieve quantitative (q)HBsAg reduction or HBsAg loss. Combining nucleos(t)ide analogues and immunotherapy reduces qHBsAg levels and induces HBsAg loss in some patients, particularly those with low baseline qHBsAg levels. Even agents that are specifically designed to reduce viral antigen load might not be able to achieve sustained HBsAg loss when used alone. Thus, rationale exists for the use of combinations of all three therapy types. Monitoring during therapy is important not just to predict HBsAg loss but also to understand mechanisms of HBsAg loss using viral and immunological biomarkers, and in selected cases intrahepatic sampling. We consider various paths to functional cure of CHB and the need to individualize treatment of this heterogeneous infection until a therapeutic avenue for all patients with CHB is available
- …