188 research outputs found

    Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain

    Get PDF
    There is accumulating evidence that bumetanide, which has been used over decades as a potent loop diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-C1 cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which transporters are involved. Understanding the processes explaining the poor brain penetration of bumetanide is needed for developing strategies to improve the brain delivery of this drug. In the present study, we administered probenecid and more selective inhibitors of active transport carriers at the BBB directly into the brain of mice to minimize the contribution of peripheral effects on the brain penetration of bumetanide. Furthermore, in vitro experiments with mouse organic anion transporter 3 (Oat3)-overexpressing Chinese hamster ovary cells were performed to study the interaction of bumetanide, bumetanide derivatives, and several known inhibitors of Oats on Oat3-mediated transport. The in vivo experiments demonstrated that the uptake and efflux of bumetanide at the BBB is much more complex than previously thought. It seems that both restricted passive diffusion and active efflux transport, mediated by Oat3 but also organic anion-transporting polypeptide (Oatp) Oatpla4 and multidrug resistance protein 4 explain the extremely low brain concentrations that are achieved after systemic administration of bumetanide, limiting the use of this drug for targeting abnormal expression of neuronal NKCC1 in brain diseases

    Foam Cell Specific LXRα Ligand

    Get PDF
    Objective The liver X receptor α (LXRα) is a ligand-dependent nuclear receptor and the major regulator of reverse cholesterol transport in macrophages. This makes it an interesting target for mechanistic study and treatment of atherosclerosis. Methods and Results We optimized a promising stilbenoid structure (STX4) in order to reach nanomolar effective concentrations in LXRα reporter-gene assays. STX4 displayed the unique property to activate LXRα effectively but not its subtype LXRβ. The potential of STX4 to increase transcriptional activity as an LXRα ligand was tested with gene expression analyses in THP1-derived human macrophages and oxLDL-loaded human foam cells. Only in foam cells but not in macrophage cells STX4 treatment showed athero- protective effects with similar potency as the synthetic LXR ligand T0901317 (T09). Surprisingly, combinatorial treatment with STX4 and T09 resulted in an additive effect on reporter-gene activation and target gene expression. In physiological tests the cellular content of total and esterified cholesterol was significantly reduced by STX4 without the undesirable increase in triglyceride levels as observed for T09. Conclusions STX4 is a new LXRα-ligand to study transcriptional regulation of anti-atherogenic processes in cell or ex vivo models, and provides a promising lead structure for pharmaceutical development

    New insights into frustrated Lewis pairs: structural investigations of intramolecular phosphane-borane adducts by using modern solid-state NMR techniques and DFT calculations

    Get PDF
    Covalent bonding interactions between the Lewis acid and Lewis base functionalities have been probed in a series of “frustrated Lewis pairs” (FLPs) (mainly substituted vinylene linked intramolecular phosphane–borane adducts), using solid-state nuclear magnetic resonance techniques and accompanying DFT calculations. Both the 11B NMR isotropic chemical shifts and nuclear electric quadrupolar coupling parameters turn out to be extremely sensitive experimental probes for such interactions, revealing linear correlations with boron–phosphorus internuclear distances. The principal component Vzz of the 11B electric field gradient tensor is tilted slightly away (∼20°) from the boron–phosphorus internuclear vector, leading to an improved understanding of the remarkable reactivity of the FLPs. Complementary 31P{1H}-CPMAS experiments reveal significant 31P–11B scalar spin–spin interactions (1J ≈ 50 Hz), evidencing covalent bonding interactions between the reaction centers. Finally, 11B{31P} rotational echo double resonance (REDOR) experiments show systematic deviations from calculated curves based on the internuclear distances from X-ray crystallography. These deviations suggest non-zero contributions from anisotropic indirect spin–spin (J anisotropy) interactions, thereby offering additional evidence for covalent bonding.SFB 858 “Cooperative Systems in Chemistry”Fonds der Chemischen IndustrieNRW Forschungsschule “Molecules and Materials

    Binding of molecular magnesium hydrides to a zirconocene-enyne template

    Get PDF
    An enyne-zirconium complex stabilizes molecular magnesium hydride ('MG''H IND. 2') and even a molecular hydride, n'C IND. 4''H IND. 9''MG'H. These systems feature magnesium olefin "pi" complexation.Deutsche ForschungsgemeinschaftNRW Forschungsschule “Molecules and Materials

    Identification of GBV-D, a Novel GB-like Flavivirus from Old World Frugivorous Bats (Pteropus giganteus) in Bangladesh

    Get PDF
    Bats are reservoirs for a wide range of zoonotic agents including lyssa-, henipah-, SARS-like corona-, Marburg-, Ebola-, and astroviruses. In an effort to survey for the presence of other infectious agents, known and unknown, we screened sera from 16 Pteropus giganteus bats from Faridpur, Bangladesh, using high-throughput pyrosequencing. Sequence analyses indicated the presence of a previously undescribed virus that has approximately 50% identity at the amino acid level to GB virus A and C (GBV-A and -C). Viral nucleic acid was present in 5 of 98 sera (5%) from a single colony of free-ranging bats. Infection was not associated with evidence of hepatitis or hepatic dysfunction. Phylogenetic analysis indicates that this first GBV-like flavivirus reported in bats constitutes a distinct species within the Flaviviridae family and is ancestral to the GBV-A and -C virus clades

    Hepatic progenitor cells of biliary origin with liver repopulation capacity

    Get PDF
    Hepatocytes and cholangiocytes self-renew following liver injury. Following severe injury hepatocytes are increasingly senescent, but whether hepatic progenitor cells (HPCs) then contribute to liver regeneration is unclear. Here, we describe a mouse model where the E3 ubiquitin ligase Mdm2 is inducibly deleted in more than 98% of hepatocytes, causing apoptosis, necrosis and senescence with nearly all hepatocytes expressing p21. This results in florid HPC activation, which is necessary for survival, followed by complete, functional liver reconstitution. HPCs isolated from genetically normal mice, using cell surface markers, were highly expandable and phenotypically stable in vitro. These HPCs were transplanted into adult mouse livers where hepatocyte Mdm2 was repeatedly deleted, creating a non-competitive repopulation assay. Transplanted HPCs contributed significantly to restoration of liver parenchyma, regenerating hepatocytes and biliary epithelia, highlighting their in vivo lineage potency. HPCs are therefore a potential future alternative to hepatocyte or liver transplantation for liver disease
    corecore