1,765 research outputs found

    Bifenthrin Baseline Susceptibility and Evaluation of Simulated Aerial Applications in \u3ci\u3eStriacosta albicosta\u3c/i\u3e (Lepidoptera: Noctuidae)

    Get PDF
    Striacosta albicosta (Smith) is a maize pest that has recently expanded its geographical range into the eastern United States and southeastern Canada. Aerial application of pyrethroids, such as bifenthrin, has been a major practice adopted to manage this pest. Reports of field failure of pyrethroids have increased since 2013. Striacosta albicosta populations were collected in 2016 and 2017 from maize fields in Nebraska, Kansas, and Canada and screened with bifenthrin active ingredient in larval contact dose-response bioassays. Resistance ratios estimated were generally low in 2016 (1.04- to 1.32-fold) with the highest LC50 in North Platte, NE (66.10 ng/cm2) and lowest in Scottsbluff, NE (50.10 ng/cm2). In 2017, O’Neill, NE showed the highest LC50 (100.66 ng/cm2) and Delhi, Canada exhibited the lowest (6.33 ng/cm2), resulting in a resistance ratio variation of 6.02- to 15.90-fold. Implications of bifenthrin resistance levels were further investigated by aerial application simulations. Experiments were conducted with a spray chamber where representative S. albicosta populations were exposed to labeled rates of a commercial bifenthrin formulation. Experiments resulted in 100% mortality for all populations, instars, insecticide rates, and carrier volumes, suggesting that levels of resistance estimated for bifenthrin active ingredient did not seem to impact the efficacy of the correspondent commercial product under controlled conditions. Results obtained from this research indicate that control failures reported in Nebraska could be associated with factors other than insecticide resistance, such as issues with the application technique, environmental conditions during and/or after application, or the insect’s natural behavior. Data generated will assist future S. albicosta resistance management programs

    Relationships Among Disease, Social Support, and Perceived Health: A Lifespan Approach

    Full text link
    We examined the relationship between the cumulative presence of major disease (cancer, stroke, diabetes, heart disease, and hypertension), social support, and self‐reported general and emotional well‐being in a community representative sample of predominantly White and African American respondents (N = 1349). Across all ages, greater presence of disease predicted poorer reported general health, and predicted lower emotional well‐being for respondents 40 and above. In contrast, social support predicted better‐reported general and emotional well‐being. We predicted that different types of social support (blood relatives, children, friends, community members) would be relatively more important for health in different age groups based on a lifespan or life stage model. This hypothesis was supported; across all ages, social support was related to better reported general and emotional health, but sources of support differed by age. Broadly, those in younger age groups tended to list familial members as their strongest sources of support, whereas older group members listed their friends and community members. As a whole, social support mediated the effect of disease on reported well‐being, however, moderated mediation by type of support was not significant. The results are consistent with a lifespan approach to changing social ties throughout the life course.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/116357/1/ajcp9758.pd

    Collagen Scaffolds in Bone Sialoprotein-Mediated Bone Regeneration

    Get PDF
    Decades of research in bioengineering have resulted in the development of many types of 3-dimentional (3D) scaffolds for use as drug delivery systems (DDS) and for tissue regeneration. Scaffolds may be comprised of different natural fibers and synthetic polymers as well as ceramics in order to exert the most beneficial attributes including biocompatibility, biodegradability, structural integrity, cell infiltration and attachment, and neovascularization. Type I collagen scaffolds meet most of these criteria. In addition, type I collagen binds integrins through RGD and non-RGD sites which facilitates cell migration, attachment, and proliferation. Type I collagen scaffolds can be used for bone tissue repair when they are coated with osteogenic proteins such as bone morphogenic protein (BMP) and bone sialoprotein (BSP). BSP, a small integrin-binding ligand N-linked glycoprotein (SIBLING), has osteogenic properties and plays an essential role in bone formation. BSP also mediates mineral deposition, binds type I collagen with high affinity, and binds αvβ3 and αvβ5 integrins which mediate cell signaling. This paper reviews the emerging evidence demonstrating the efficacy of BSP-collagen scaffolds in bone regeneration

    Droplet size and nozzle tip pressure from a pulse-width modulation sprayer

    Get PDF
    Pulse-width modulation (PWM) sprayers can improve application accuracy through flow control, turn compensation, and high-resolution overlap control by pulsing an electronically-actuated solenoid valve which controls the relative proportion of time each solenoid valve is open (duty cycle). The objective of this experiment was to identify the droplet size distribution and nozzle tip pressure when influenced by PWM duty cycle, nozzle technology, and gauge pressure to provide PWM guidelines. The experiment was conducted in a low-speed wind tunnel at the Pesticide Application Technology Laboratory using a SharpShooter® PWM system. In general, for non-venturi nozzles, as duty cycle decreased, droplet size slightly increased between 40 and 100% duty cycles. Conversely, venturi nozzles did not always follow this trend. The lowest duty cycle evaluated (20%) negatively impacted droplet size and caused inconsistencies for all nozzle by pressure combinations. The addition of a solenoid valve lowered nozzle tip pressure while gauge pressure remained constant indicating a restriction is present within the solenoid valve. Greater orifice sizes increased the pressure loss observed. Duty cycle minimally impacted nozzle tip pressure trends which were similar to the electrical square wave PWM signals. However, venturi nozzles deviated from this trend, specifically twin-fan, single pre-orifice venturi nozzles. In conclusion, venturi nozzles are not recommended for PWM systems as they may lead to inconsistent applications, specifically in regards to droplet size generation and nozzle tip pressures. Spray pressures of 276 kPa or greater and PWM duty cycles of 40% or greater are recommended to ensure proper PWM operation

    A TNF-α Promoter Polymorphism Is Associated with Juvenile Onset Psoriasis and Psoriatic Arthritis

    Get PDF
    Tumor necrosis factor-α is considered to be one of the important mediators in the pathogenesis of psoriasis. A strong association of juvenile onset psoriasis with the major histocompatibility complex encoded HLA-Cw6 antigen has been reported but it is unclear whether Cw6 itself or a closely linked gene is involved in the pathogenesis. This study has focused on the association of promoter polymorphisms of the major histocompatibility complex encoded tumor necrosis factor-α gene with psoriasis and psoriatic arthritis. Tumor necrosis factor-α promoter polymorphisms were sought by sequence-specific oligonucleotide hybridization and by direct sequencing in Caucasian patients with juvenile onset psoriasis and with psoriatic arthritis and in healthy controls. A mutation at position −238 of the tumor necrosis factor-α promoter was present in 23 of 60 patients (38%; p < 0.0001; Pcorr < 0.008) with juvenile onset psoriasis and in 20 of 62 patients (32%; p < 0.0003; Pcorr < 0.03) with psoriatic arthritis, compared with seven of 99 (7%) Caucasian controls. There was a marked increase of homozygotes for this mutation in the psoriasis group. Another mutation at position −308 was found in similar proportions of patients and controls. Our study shows a strong association of the tumor necrosis factor-α promoter polymorphism at position −238 with psoriasis and psoriatic arthritis. Our findings suggest that this promoter polymorphism itself or a gene in linkage disequilibrium with tumor necrosis factor-α predispose to the development of psoriasis

    Bifenthrin Baseline Susceptibility and Evaluation of Simulated Aerial Applications in \u3ci\u3eStriacosta albicosta\u3c/i\u3e (Lepidoptera: Noctuidae)

    Get PDF
    Striacosta albicosta (Smith) is a maize pest that has recently expanded its geographical range into the eastern United States and southeastern Canada. Aerial application of pyrethroids, such as bifenthrin, has been a major practice adopted to manage this pest. Reports of field failure of pyrethroids have increased since 2013. Striacosta albicosta populations were collected in 2016 and 2017 from maize fields in Nebraska, Kansas, and Canada and screened with bifenthrin active ingredient in larval contact dose-response bioassays. Resistance ratios estimated were generally low in 2016 (1.04- to 1.32-fold) with the highest LC50 in North Platte, NE (66.10 ng/cm2) and lowest in Scottsbluff, NE (50.10 ng/cm2). In 2017, O’Neill, NE showed the highest LC50 (100.66 ng/cm2) and Delhi, Canada exhibited the lowest (6.33 ng/cm2), resulting in a resistance ratio variation of 6.02- to 15.90-fold. Implications of bifenthrin resistance levels were further investigated by aerial application simulations. Experiments were conducted with a spray chamber where representative S. albicosta populations were exposed to labeled rates of a commercial bifenthrin formulation. Experiments resulted in 100% mortality for all populations, instars, insecticide rates, and carrier volumes, suggesting that levels of resistance estimated for bifenthrin active ingredient did not seem to impact the efficacy of the correspondent commercial product under controlled conditions. Results obtained from this research indicate that control failures reported in Nebraska could be associated with factors other than insecticide resistance, such as issues with the application technique, environmental conditions during and/or after application, or the insect’s natural behavior. Data generated will assist future S. albicosta resistance management programs

    The International Surface Pressure Databank version 2

    Get PDF
    The International Surface Pressure Databank (ISPD) is the world's largest collection of global surface and sea-level pressure observations. It was developed by extracting observations from established international archives, through international cooperation with data recovery facilitated by the Atmospheric Circulation Reconstructions over the Earth (ACRE) initiative, and directly by contributing universities, organizations, and countries. The dataset period is currently 1768–2012 and consists of three data components: observations from land stations, marine observing systems, and tropical cyclone best track pressure reports. Version 2 of the ISPD (ISPDv2) was created to be observational input for the Twentieth Century Reanalysis Project (20CR) and contains the quality control and assimilation feedback metadata from the 20CR. Since then, it has been used for various general climate and weather studies, and an updated version 3 (ISPDv3) has been used in the ERA-20C reanalysis in connection with the European Reanalysis of Global Climate Observations project (ERA-CLIM). The focus of this paper is on the ISPDv2 and the inclusion of the 20CR feedback metadata. The Research Data Archive at the National Center for Atmospheric Research provides data collection and access for the ISPDv2, and will provide access to future versions

    Seedbank Persistence of Palmer Amaranth (\u3ci\u3eAmaranthus palmeri\u3c/i\u3e) and Waterhemp (\u3ci\u3eAmaranthus tuberculatus\u3c/i\u3e) across Diverse Geographical Regions in the United States

    Get PDF
    Knowledge of the effects of burial depth and burial duration on seed viability and, consequently, seedbank persistence of Palmer amaranth (Amaranthus palmeri S. Watson) and waterhemp [Amaranthus tuberculatus (Moq.) J. D. Sauer] ecotypes can be used for the development of efficient weed management programs. This is of particular interest, given the great fecundity of both species and, consequently, their high seedbank replenishment potential. Seeds of both species collected from five different locations across the United States were investigated in seven states (sites) with different soil and climatic conditions. Seeds were placed at two depths (0 and 15cm) for 3 yr. Each year, seeds were retrieved, and seed damage (shrunken, malformed, or broken) plus losses (deteriorated and futile germination) and viability were evaluated. Greater seed damage plus loss averaged across seed origin, burial depth, and year was recorded for lots tested at Illinois (51.3% and 51.8%) followed by Tennessee (40.5% and 45.1%) and Missouri (39.2% and 42%) for A. palmeri and A. tuberculatus, respectively. The site differences for seed persistence were probably due to higher volumetric water content at these sites. Rates of seed demise were directly proportional to burial depth (α=0.001), whereas the percentage of viable seeds recovered after 36 mo on the soil surface ranged from 4.1% to 4.3% compared with 5% to 5.3% at the 15-cm depth for A. palmeri and A. tuberculatus, respectively. Seed viability loss was greater in the seeds placed on the soil surface compared with the buried seeds. The greatest influences on seed viability were burial conditions and time and site-specific soil conditions, more so than geographical location. Thus, management of these weed species should focus on reducing seed shattering, enhancing seed removal from the soil surface, or adjusting tillage systems

    Defective Peripheral Nerve Development Is Linked to Abnormal Architecture and Metabolic Activity of Adipose Tissue in Nscl-2 Mutant Mice

    Get PDF
    BACKGROUND: In mammals the interplay between the peripheral nervous system (PNS) and adipose tissue is widely unexplored. We have employed mice, which develop an adult onset of obesity due to the lack the neuronal specific transcription factor Nscl-2 to investigate the interplay between the nervous system and white adipose tissue (WAT). METHODOLOGY: Changes in the architecture and innervation of WAT were compared between wildtype, Nscl2-/-, ob/ob and Nscl2-/-//ob/ob mice using morphological methods, immunohistochemistry and flow cytometry. Metabolic alterations in mutant mice and in isolated cells were investigated under basal and stimulated conditions. PRINCIPAL FINDINGS: We found that Nscl-2 mutant mice show a massive reduction of innervation of white epididymal and paired subcutaneous inguinal fat tissue including sensory and autonomic nerves as demonstrated by peripherin and neurofilament staining. Reduction of innervation went along with defects in the formation of the microvasculature, accumulation of cells of the macrophage/preadipocyte lineage, a bimodal distribution of the size of fat cells, and metabolic defects of isolated adipocytes. Despite a relative insulin resistance of white adipose tissue and isolated Nscl-2 mutant adipocytes the serum level of insulin in Nscl-2 mutant mice was only slightly increased. CONCLUSIONS: We conclude that the reduction of the innervation and vascularization of WAT in Nscl-2 mutant mice leads to the increase of preadipocyte/macrophage-like cells, a bimodal distribution of the size of adipocytes in WAT and an altered metabolic activity of adipocytes

    TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.

    Get PDF
    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies
    corecore