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Pulse-width modulation (PWM) sprayers can improve application accuracy through flow

control, turn compensation, and high-resolution overlap control by pulsing an

electronically-actuated solenoid valve which controls the relative proportion of time each

solenoid valve is open (duty cycle). The objective of this experiment was to identify the

droplet size distribution and nozzle tip pressure when influenced by PWM duty cycle,

nozzle technology, and gauge pressure to provide PWM guidelines. The experiment was

conducted in a low-speed wind tunnel at the Pesticide Application Technology Laboratory

using a SharpShooter® PWM system. In general, for non-venturi nozzles, as duty cycle

decreased, droplet size slightly increased between 40 and 100% duty cycles. Conversely,

venturi nozzles did not always follow this trend. The lowest duty cycle evaluated (20%)

negatively impacted droplet size and caused inconsistencies for all nozzle by pressure

combinations. The addition of a solenoid valve lowered nozzle tip pressure while gauge

pressure remained constant indicating a restriction is present within the solenoid valve.

Greater orifice sizes increased the pressure loss observed. Duty cycle minimally impacted

nozzle tip pressure trends which were similar to the electrical square wave PWM signals.

However, venturi nozzles deviated from this trend, specifically twin-fan, single pre-orifice

venturi nozzles. In conclusion, venturi nozzles are not recommended for PWM systems as

they may lead to inconsistent applications, specifically in regards to droplet size generation

and nozzle tip pressures. Spray pressures of 276 kPa or greater and PWM duty cycles of 40%

or greater are recommended to ensure proper PWM operation.

© 2018 IAgrE. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Pesticide input costs have increased in the United States by US

$5.35 billion over the past decade with weed management

comprising the largest portion of these applications as greater

than 92% by area of corn (maize) (Zeamays L.), soybean [Glycine

max (L.) Merr], and cotton (Gossypium hirsutum L.) areas were

treated for weeds in 2015 (USDA-NASS, 2015). The complexity

of pesticide applications (Ebert, Taylor, Downer, & Hall, 1999)

has led to reports of inaccurate and inefficient sprayer per-

formance (Bish & Bradley, 2017; Grisso, Dickey, & Schulze,

1989; Ozkan, 1987). In current production agricultural sys-

tems, this is unacceptable. More precise and efficacious

pesticide applications are necessary to meet regulatory de-

mands, increase crop yield potential, and reduce the selection

pressure for the evolution of herbicide resistance.

Agricultural pesticides are typically applied in a spray so-

lution atomized by hydraulic nozzles creating a heteroge-

neous mixture of droplet sizes within the spray pattern

(Matthews, Bateman, & Miller, 2014). The resulting spray

droplet sizes are determined by numerous factors and the

complex interactions between them such as spray solution

chemistry (Bouse, Kirk, & Bode, 1990; Butler Ellis, Tuck, &

Miller, 1997; Chapple, Downer, & Hall, 1993), nozzle orifice

size (Barnett & Matthews, 1992; Nuyttens, Baetens, De

Schampheleire, & Sonck, 2007; Nuyttens, De Schampheleire,

Verboven, Brusselman, & Dekeyser, 2009), nozzle design

technology (Bouse, 1994; Butler Ellis et al., 2002; Nuyttens

et al., 2007, 2009), and application pressure (Barnett &

Matthews, 1992; Bouse, 1994; Nuyttens et al., 2007; Young,

1990). Creech, Henry, Fritz, and Kruger (2015) determined

nozzle design and application pressure caused the greatest

changes in spray droplet size. Previous research highlighted

the importance of droplet size on drift mitigation (Bueno, da

Cunha, & de Santana, 2017; Hewitt, 1997; Johnson, Roeth,

Martin, & Klein, 2006) and herbicide efficacy (Etheridge,

Womac, & Mueller, 1999; Knoche, 1994; Meyer, Norsworthy,

Kruger, & Barber, 2016). Furthermore, homogenisation of the

droplet sizes represented within a spray pattern coupled with

reduced droplet velocities could result in greater droplet

adhesion to leaf surfaces and increase biological efficacy,

while limiting drift potential (De Cock, Massinon, Salah, &

Lebeau, 2017).

Pulse-width modulation (PWM) sprayers allow for several

factors, including application pressure and spray droplet size,

to be standardized across a range of sprayer speeds while

variably controlling flow to increase application precision.

Flow is controlled by pulsing an electronically-actuated sole-

noid valve placed directly upstream of the nozzle (Giles &

Comino, 1989). The flow is changed by controlling the rela-

tive proportion of time each solenoid valve is open (duty

cycle). This system allows real-time flow rate changes to be

made without manipulating application pressure as in other

variable rate spray application systems (Anglund & Ayers,

2003). Additionally, PWM solenoid valves buffer some nega-

tive impacts, such as spray boom velocity variation during

turning movements and flow on/off latency of automatic

boom shutoffs, observed with other rate controller systems

(Luck, Sharda, Pitla, Fulton, & Shearer, 2011; Sharda, Fulton,

McDonald, & Brodbeck, 2011; Sharda, Luck, Fulton,

McDonald, & Shearer, 2013). Application pressure based vari-

able rate flow control devices have been shown to have slow

response time and affect nozzle performance, specifically

droplet size (Giles & Comino, 1989). Previous PWM research

illustrated little to no effect from duty cycle on spray droplet

size (Giles & Comino, 1990; Giles, Henderson, & Funk, 1996);

however, only non-venturi nozzles and nozzles lacking a pre-

orifice were evaluated.

PWM sprayers provide the possibility for more precise

applications through automatic boom and individual nozzle

shut off controls (Luck, Pitla, et al., 2010; Luck, Zandonadi,

Luck, & Shearer, 2010) and minimizing changes in droplet

trajectory and velocity (Butts, Hoffmann, Luck, & Kruger,

2017; Giles, 2001; Giles & Ben-Salem, 1992). Furthermore,

pulsing dual nozzle configurations increased coverage of

Palmer amaranth (Amaranthus palmeri S. Wats.) while

simultaneously minimizing the drift potential of small

droplets (Womac et al., 2017; Womac, Melnichenko, Steckel,

Montgomery, & Hayes, 2016). One drawback to PWM appli-

cation systems has been the inability to create wide ranges of

droplet distributions because venturi nozzles are not rec-

ommended (Capstan Ag Systems Inc., 2013). However, pre-

vious research demonstrated there are commercially

available, non-venturi nozzles that can produce the range of

droplet size distributions needed to reduce drift potential

(Butts, Geyer, & Kruger, 2015).

Current nozzle technologies and application parameters

must be evaluated on PWM sprayers to determine best use

practices for the equipment. The objective of this experiment

was to identify the droplet size distribution and pressure at

the nozzle tip as influenced by PWMduty cycle, current nozzle

technology (venturi versus non-venturi), and gauge applica-

tion pressure, and provide guidelines for optimal PWM use.

Nomenclature

a0, mm Y-intercept of polynomial regression

an, mm Constant coefficients of polynomial regression

Dv0.1, mm Droplet diameter such that 10% of the spray

volume was contained in droplets < stated

diameter

Dv0.5, mm Droplet diameter such that 50% of the spray

volume was contained in droplets < stated

diameter

Dv0.9, mm Droplet diameter such that 90% of the spray

volume was contained in droplets < stated

diameter

driftable fines, % Spray volume with droplets �150 mm

duty cycle, % Relative proportion of time solenoid valve

is open

x,% Duty cycle

AMS Ammonium sulphate

ANOVA Analysis of variance

LSD Least significant difference

PWM Pulse-width modulation

r2 Coefficient of determination
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2. Materials and methods

2.1. Experimental design

Research was conducted in the spring and summer of 2016 to

evaluate the effect of nozzle type, PWM duty cycle, and gauge

application pressure on droplet size distribution and nozzle

tip pressure. The experiment was conducted using the low-

speed wind tunnel at the Pesticide Application Technology

Laboratory located at the West Central Research and Exten-

sion Center in North Platte, NE. Creech et al. (2015) and

Henry, Kruger, Fritz, Hoffmann, and Bagley (2014) provide

further details regarding the low-speed wind tunnel frame-

work and operation. The wind tunnel was equipped with a

SharpShooter® PWM system (Capstan Ag Systems, Inc.,

Topeka, KS) to select the specific duty cycle for each

treatment.

The experiment was a 12� 6� 3� 2 factorial cumulating in

a total of 432 treatments, and each treatment was replicated

three times (three separate nozzle traverses across the laser).

The treatments consisted of 12 nozzle types, 6 PWM duty cy-

cles, 3 gauge application pressures (pressure before the sole-

noid valve), and 2 spray solutions (Table 1). Droplet size and

nozzle tip pressure of water were also measured for the 12

nozzle types at the 3 gauge application pressures in a standard

nozzle body configuration (no solenoid valve). Glyphosate

(Roundup PowerMAX®, Monsanto Co., St. Louis, MO 63167)

plus ammonium sulphate (AMS) solution was applied at

0.87 kg ae ha�1 and 1.91 kg ha�1, respectively, in a carrier

volume of 94 L ha�1 to assess whether an active ingredient

within the spray solution would affect droplet size and nozzle

tip pressure trends when pulsed compared to water alone.

Reference nozzles were used to determine spray classifica-

tions (ASABE, 2009) and allow for comparisons between

testing laboratories (Fritz et al., 2014). Air temperature, solu-

tion temperature, and relative humidity were also recorded

during the time periods the experiment was conducted.

2.2. Droplet size distribution collection

The droplet size distribution for each treatment was

measured using a Sympatec HELOS-VARIO/KR laser diffrac-

tion system with the R7 lens (Sympatec Inc., Clausthal, Ger-

many). The laser was linked with WINDOX 5.7.0.0 software

(Sympatec Inc.) operated on a computer adjacent to the laser.

The R7 lens measures droplets in a dynamic size range from

18 to 3500 mm. The laser consists of twomain components, an

emitter housing containing the optical box and the source of

the laser, and a receiver housing containing the lens and

detector element (Fig. 1). The two laser housings are sepa-

rated (1.2 m) on each side of the wind tunnel andmounted on

an aluminum optical bench rail that was connected under-

neath the wind tunnel to maintain proper laser alignment.

The laser was beamed through two 10-cm holes bored into

the Plexiglass wind tunnel side wall. The spray plume was

oriented perpendicular to the laser and traversed at 0.2 m s�1

using a mechanical linear actuator. The distance from the

nozzle tip to the laser was 30 cm. The wind tunnel generated

a 24 km h�1 airspeed in which measurements were recorded

(Fritz, Hoffmann, Bagley, et al., 2014). The laser diffraction

system provided multiple categories to compare the spray

droplet distributions of each treatment. The treatments in

this study were compared using the Dv0.1, Dv0.5, and Dv0.9

parameters which represent the droplet diameters such that

10, 50, and 90% of the spray volumewas contained in droplets

of smaller diameter, respectively. Furthermore, the percent

of spray volume with droplets �150 mm [referred to as drift-

able fines throughout (Hewitt, 1997)] were recorded for each

treatment.

Table 1 e Nozzles (12), pulse-width modulation duty cycles (7), gauge application pressures (3), and spray solutions (2)
evaluated in a factorial arrangement of treatments in this research.

Broadcast nozzles

Abbreviation Name Design Duty cycle % Gauge pressure kPa Spray solution

AITTJ-6011004a Air Induction Turbo TwinJet Venturi Standarde 207 Water alone

AM11002b Airmix Venturi 100 276 Glyphosate plus ammonium

sulphate (AMS)f

AM11004b Airmix Venturi 80 414

AMDF11004b Airmix DualFan Venturi 60

AMDF11008b Airmix DualFan Venturi 50

GAT11004c GuardianAIR Twin Venturi 40

TTI11004a Turbo TeeJet Induction Venturi 20

DR11004d Combo-Jet Drift Control Non-Venturi

ER11004d Combo-Jet Extended Range Non-Venturi

MR11004d Combo-Jet Mid Range Non-Venturi

SR11004d Combo-Jet Small Reduction Non-Venturi

UR11004d Combo-Jet Ultra Drift Control Non-Venturi

a TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA.
b Greenleaf Technologies, Covington, LA, USA.
c Pentair Hypro SHURflo plc., Minneapolis, MN, USA.
d Wilger Industries Ltd., Lexington, TN, USA.
e Standard duty cycle indicates no solenoid valve is equipped.
f Glyphosate (Roundup PowerMAX®, Monsanto Co., St. Louis, MO, USA) plus ammonium sulphate (AMS) solution was applied at 0.87 kg ae ha�1

and 1.91 kg ha�1, respectively, in a carrier volume of 94 l ha�1.
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2.3. Nozzle tip pressure determination

The gauge application pressures of 207, 276, and 414 kPa were

verified by a PX309, 5 V, 0e689 kPa range pressure transducer

(Omega Engineering, Inc., Stamford, CT) located 40 cm up-

stream from the solenoid valve and connected to a display

monitor. The nozzle tip pressure was measured using a

similar pressure transducer installed inline between the PWM

solenoid valve and nozzle (Fig. 2). The nozzle tip pressure

transducer was powered by an 80 W switching mode DC

power supply (Extech Instruments, Nashua, NH) which was

set to output 10 V. These specific pressure transducers have a

silicon sensor protected by a fluid filled stainless steel dia-

phragm that converts pressure to an analogue electrical

signal. The analogue electrical signals were sampled at a

100 Hz rate for 5 s using an Arduino Mega 2560 board (open-

source prototyping platform, Arduino.cc). The Arduino board

converted the analogue signals to digital and sent them to a

serial monitor on a connected computer where the signals

were transformed to pressure measurements (kPa).

2.4. Statistical analyses

Regression analysis was conducted on Dv0.5 values to allow for

droplet size predictions as impacted by duty cycle within

nozzle type and gauge application pressure and evaluate the

variability across nozzle types when pulsed. Seventy different

linear, nonlinear, and polynomial models were evaluated to

determine best fit using CurveExpert Professional© (v. 2.6.5,

HyamsDevelopment). Droplet size parameters, driftable fines,

and average nozzle tip pressure data were subjected to anal-

ysis of variance (ANOVA) using a mixed effect model in SAS

(SAS v9.4, SAS Institute Inc., Cary, NC, USA). Nozzle type, PWM

duty cycle, gauge application pressure, and spray solution

were treated as fixed effects. Means were separated using

Fisher's protected LSD test with the Tukey adjustment to

correct for multiplicity. A gamma distribution was used for

analysis of droplet size parameters and nozzle tip pressures as

datawere bound between zero and positive infinity, and a beta

distribution was used for analysis of driftable fines as data

were bound between zero and one (Stroup, 2013). Back-

transformed data are presented for clarity.

3. Results and discussion

The environmental conditions within the Pesticide Applica-

tion Technology Laboratory were maintained to be relatively

constant. The average air temperature and relative humidity

throughout the duration of this study was 25 C and 47%,

respectively. The average solution temperature across treat-

ments was 21 C. Previous literature suggested less than 5 C

difference between air and solution temperatures tominimize

variance in droplet size measurements (Hoffmann, Fritz, &

Martin, 2011; Miller & Tuck, 2005).

The Dv0.5 regression over duty cycle analysis revealed that

a polynomial regression model (Equation (1)) was among the

top fitting models across pressures and nozzles; therefore it

was fit to all data. The degree of polynomial (first through

Fig. 1 e Illustration of the low_speed wind tunnel and laser diffraction system used for droplet spectrum analysis at the

University of NebraskaeLincoln Pesticide Application Technology Laboratory located in North Platte, NE.

Fig. 2 e Nozzle body and pressure transducer assembly

used to measure nozzle tip pressures after the pulse-width

modulation solenoid valve. Another pressure transducer

was connected inline 40-cm upstream from this assembly

to provide gauge application pressure.
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Fig. 3 e Polynomial regressions of droplet size data (Dv0.5) of water as influenced by duty cycle for the AITTJ-6011004 (top

left), AM11002 (top right), AM11004 (middle left), AMDF11004 (middle right), AMDF11008 (bottom left), and GAT11004

(bottom right) nozzles.
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Fig. 4 e Polynomial regressions of droplet size data (Dv0.5) of water as influenced by duty cycle for the TTI11004 (top left),

DR11004 (top right), ER11004 (middle left), MR11004 (middle right), SR11004 (bottom left), and UR11004 (bottom right)

nozzles.
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fourth degrees) for each treatment was selected based on both

the AICC and an F-test at a ¼ 0.01.

Dv0:5 ¼ anx
n þ an�1x

n�1 þ…þ a2x
2 þ a1xþ a0 [1]

Where Dv0:5 is droplet diameter such that 50% of the spray

volume was contained in droplets of diameter less than the

stated diameter, a0 is y-intercept, an is constant coefficients,

and x is duty cycle.

Across all response variables, ANOVA resulted in a noz-

zle*duty cycle*gauge application pressure*solution interaction

(P < 0.0001). Therefore, comparisons were reduced to strictly

observe the effect of PWM duty cycle on droplet size (Dv0.1,

Dv0.5, Dv0.9, and driftable fines) within a nozzle, gauge

application pressure, and solution. Moreover, for nozzle tip

pressure measurements, comparisons were reduced to spe-

cifically observe the effect of nozzle type within a solution,

gauge application pressure, and PWM duty cycle. Relative

trends across analyses were similar for the water and glyph-

osate plus AMS solutions (data not shown); therefore, the

water solution is strictly discussed within this manuscript.

3.1. Droplet size

3.1.1. Venturi nozzles
Polynomial regressions established for venturi nozzles (AITTJ-

6011004, AM11002, AM11004, AMDF11004, AMDF11008,

Table 2 e Polynomial regression parameters (a0, a1, a2, a3, a4) and coefficient of determination (r2) for droplet size (Dv0.5)
regressed over duty cycle of water for each nozzle*pressure combination.

Nozzle Gauge
pressure

a0 a1 a2 a3 a4 Coefficient of
determination

kPa ____________________________________________________mm____________________________________________________ r2

AITTJ-

6011004a
207 612.06 3.85 �0.06 2.11 E -04 __ 0.96

AM11002b 207 552.89 �0.63 �0.03 2.07 E -04 __ 0.99

AM11004b 207 803.43 �22.31 0.56 �5.47 E -03 1.85 E -05 0.86

AMDF11004b 207 777.85 �21.41 0.57 �5.81 E -03 2.02 E -05 0.94

AMDF11008b 207 506.68 7.70 �0.18 1.70 E -03 6.06 E -06 0.99

GAT11004d 207 608.88 �6.74 0.22 �2.66 E -03 1.05 E -05 0.97

TTI11004a 207 595.66 7.51 �0.05 __ __ 0.94

DR11004c 207 446.70 11.17 �0.17 7.33 E -04 __ 0.97

ER11004c 207 448.53 �9.13 0.21 �2.11 E -03 7.65 E -06 0.98

MR11004c 207 767.14 �21.60 0.56 �5.87 E -03 2.11 E -05 0.91

SR11004c 207 540.98 �9.65 0.24 �2.57 E -03 9.84 E -06 0.99

UR11004c 207 422.63 17.85 �0.23 9.12 E -04 __ 0.86

AITTJ-

6011004a
276 563.95 3.35 �0.05 2.18 E -04 __ 0.97

AM11002b 276 503.11 �4.46 0.09 �8.49 E -04 3.00 E -06 0.99

AM11004b 276 747.43 �18.38 0.49 �5.06 E -03 1.77 E -05 0.89

AMDF11004b 276 665.57 �15.31 0.40 �4.07 E -03 1.39 E -05 0.96

AMDF11008b 276 522.78 2.55 �0.02 __ __ 0.97

GAT11004d 276 476.70 2.41 �0.05 2.13 E -04 __ 0.99

TTI11004a 276 642.98 15.78 �0.40 4.37 E -03 �1.74 E -05 0.98

DR11004c 276 624.47 �4.10 0.15 �1.96 E -03 7.96 E -06 0.94

ER11004c 276 475.18 �13.43 0.34 �3.50 E -03 1.26 E -05 0.89

MR11004c 276 715.79 �18.31 0.46 �4.65 E -03 1.62 E -05 0.96

SR11004c 276 487.27 �8.52 0.20 �2.03 E -03 7.46 E -06 0.97

UR11004c 276 550.55 15.30 �0.32 2.60 E -03 �7.28 E -06 0.96

AITTJ-

6011004a
414 479.36 2.94 �0.05 2.07 E -04 __ 0.99

AM11002b 414 419.10 �1.30 0.04 __ __ 0.89

AM11004b 414 546.59 �9.56 0.23 �2.29 E -03 7.86 E -06 0.82

AMDF11004b 414 536.24 �10.51 0.26 �2.64 E -03 9.00 E -06 0.89

AMDF11008b 414 532.04 �2.62 0.04 �2.36 E -04 __ 0.98

GAT11004d 414 445.16 �6.41 0.19 �2.16 E -03 7.89 E -06 0.90

TTI11004a 414 401.07 18.21 �0.40 3.79 E -03 �1.30 E -05 0.95

DR11004c 414 654.99 �12.86 0.34 �3.60 E -03 1.32 E -05 0.74

ER11004c 414 321.09 �5.54 0.14 �1.48 E -03 5.45 E -06 0.89

MR11004c 414 516.55 �8.66 0.22 �2.36 E -03 8.83 E -06 0.89

SR11004c 414 385.76 �6.06 0.15 �1.61 E -03 5.93 E -06 0.88

UR11004c 414 759.89 �2.48 0.01 __ __ 0.25

a TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA.
b Greenleaf Technologies, Covington, LA, USA.
c Wilger Industries Ltd., Lexington, TN, USA.
d Pentair Hypro SHURflo plc., Minneapolis, MN, USA.
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GAT11004, and TTI11004) to predict the effect of duty cycle on

the Dv0.5 for each gauge pressure are presented in Figs. 3 and 4.

The 20% duty cycle caused severe deviations from observed

droplet size trends across other duty cycle treatments (Figs. 3

and 4) resulting in curved tails to the fit models. This duty

cycle was determined as the cause of the required polynomial

regression as opposed to linearmodels previously used in PWM

droplet size research (Giles & Comino, 1990). It is highly rec-

ommended that applicators operate a PWMsprayer at 40%duty

cycles or greater. The resulting model parameters and coeffi-

cient of determination (r2) values are presented in Table 2.

Generally, as duty cycle decreased, the droplet size increased

across venturi nozzles within each gauge pressure. On average,

as duty cycle decreased from 100 to 40%, models predicted an

increase in droplet size of 0.90, 0.64, and 0.48 mm for every 1%

duty cycle decrease for the 207, 276, and 414 kPa gauge pres-

sures, respectively, across venturi nozzles. Although the r2

values tended to decrease as gauge pressure increased, these

results indicate increasing the operating pressure on PWM

sprayers can buffer the effect of pulsing on droplet size.

The droplet size distributions and driftable fines of venturi

nozzles as affected by pulsing are presented in Table 3

through 6. Across duty cycles, the droplet size distributions

from venturi nozzles followed the pattern (from smallest to

greatest): AM11002 < GAT11004 < AMDF11004 < AM1

1004 < AMDF11008 < AITTJ-6011004 < TTI11004 (Tables 3e5).

Table 3 e Droplet size data such that 10% of the spray volume is contained in droplets of lesser diameter (Dv0.1) for water
impacted by duty cycle for nozzle and pressure combinations.

Nozzle Dv0.1

Duty cycle (%)e

Gauge pressure 20 40 50 60 80 100 Standard

kPa _____________________________________________________mm______________________________________________________

AITTJ-6011004a 207 360 a 359 a 356 a 359 a 340 b 325 c 313 d

AM11002b 207 244 a 240 b 234 c 224 d 212 f 203 g 217 e

AM11004b 207 261 b 248 e 245 f 258 c 264 a 251 d 263 ab

AMDF11004b 207 260 a 248 cd 256 b 259 a 256 b 246 d 249 c

AMDF11008b 207 305 b 308 a 306 b 302 c 299 d 289 e 275 f

GAT11004d 207 268 a 271 a 270 a 268 a 260 b 234 d 244 c

TTI11004a 207 397 e 442 c 439 c 459 a 452 b 449 b 427 d

DR11004c 207 309 c 331 a 330 a 329 a 323 b 309 c 330 a

ER11004c 207 138 a 128 c 127 c 126 cd 124 d 119 e 132 b

MR11004c 207 241 b 230 d 233 cd 236 c 234 c 215 e 247 a

SR11004c 207 185 a 174 b 174 b 169 c 166 d 158 e 186 a

UR11004c 207 374 f 427 c 446 a 427 c 435 b 419 e 422 d

AITTJ-6011004a 276 315 b 318 a 313 b 311 b 297 c 287 d 277 e

AM11002b 276 205 a 200 b 197 c 196 d 192 e 187 f 191 e

AM11004b 276 255 a 241 d 247 c 250 b 241 d 236 e 230 f

AMDF11004b 276 232 a 225 d 226 cd 229 ab 229 bc 218 e 217 e

AMDF11008b 276 282 b 280 b 289 a 284 b 280 b 266 c 241 d

GAT11004d 276 253 a 253 a 250 b 247 b 233 c 214 d 213 d

TTI11004a 276 432 c 443 a 438 b 440 ab 441 ab 429 c 371 d

DR11004c 276 297 ab 292 bc 298 a 293 abc 289 c 278 d 293 abc

ER11004c 276 129 a 120 b 116 c 128 a 116 c 111 d 120 b

MR11004c 276 236 a 220 b 220 b 222 b 215 c 205 e 212 d

SR11004c 276 164 a 156 b 152 c 153 c 148 d 143 e 162 a

UR11004c 276 397 c 407 a 400 b 392 d 386 e 377 f 387 e

AITTJ-6011004a 414 259 a 258 a 258 a 253 b 241 c 231 d 225 e

AM11002b 414 168 a 160 c 165 b 160 cd 155 e 150 f 159 d

AM11004b 414 194 a 185 cd 184 d 185 cd 188 bc 182 d 191 ab

AMDF11004b 414 190 a 183 b 182 bc 180 cd 181 bc 172 e 177 d

AMDF11008b 414 231 a 220 b 217 c 216 c 214 c 208 d 198 e

GAT11004d 414 178 d 186 b 190 a 193 a 185 b 182 c 174 e

TTI11004a 414 310 d 326 a 322 ab 316 cd 319 bc 314 cd 303 e

DR11004c 414 243 b 233 d 237 c 234 d 236 c 228 e 259 a

ER11004c 414 101 b 97 de 100 bc 98 cd 97 de 96 e 104 a

MR11004c 414 188 a 179 b 178 b 176 c 174 c 167 d 189 a

SR11004c 414 130 b 127 bc 127 bc 128 bc 125 cd 122 d 137 a

UR11004c 414 350 b 361 a 320 f 318 f 335 d 326 e 342 c

a TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA.
b Greenleaf Technologies, Covington, LA, USA.
c Wilger Industries Ltd., Lexington, TN, USA.
d Pentair Hypro SHURflo plc., Minneapolis, MN, USA.
e Means within a gauge pressure and nozzle with the same letter are not significantly different (P� 0.05). Standard duty cycle refers to a sprayer

configuration with no solenoid valve equipped.
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Driftable fines emitted from venturi nozzles were inversely

proportional across duty cycles (Table 6). These droplet size

patterns were expected according to the nozzle manufac-

turer's catalogues. For reference, the spray classifications

were Coarse, Coarse, Very Coarse, Very Coarse, Very Coarse,

Extremely Coarse, and Ultra Coarse for the AM11002,

GAT11004, AMDF11004, AM11004, AMDF11008, AITTJ-6011004,

and TTI11004 nozzles, respectively, at 276 kPa.

The addition of the solenoid valve to the spray system had

variable effects on the droplet size distributions from venturi

nozzles. The AITTJ-6011004, AMDF11008, and TTI11004 had

greater droplet sizes and reduced or equal driftable fines

across gauge pressures when the solenoid valve was operated

at a 100% duty cycle compared to the standard configuration

(no solenoid valve equipped). This is likely due to an addi-

tional restriction or elongated flow path within dual-fan and

deflector-type venturi nozzles compared to other nozzles

resulting in reduced pressure at the nozzle exit. Previous

research corroborates this theory as reductions in droplet

velocity from these nozzles were observed when a solenoid

valve was equipped and operated at a 100% duty cycle (Butts

et al., 2017).

The Dv0.1, Dv0.9, and driftable fines from venturi nozzles

followed similar trends as model predictions of the Dv0.5 pre-

viously discussed. Typically, as duty cycle decreased, the Dv0.1

and Dv0.9 increased, and the driftable fines decreased across

venturi nozzles and within gauge pressures. The average in-

crease in Dv0.1 and Dv0.9 was 5.6% and 6.7%, respectively,

Table 4 e Droplet size data such that 50% of the spray volume is contained in droplets of lesser diameter (Dv0.5) for water
impacted by duty cycle for nozzle and pressure combinations.

Nozzle Dv0.5

Duty cycle (%)e

Gauge pressure 20 40 50 60 80 100 Standard

kPa _____________________________________________________mm______________________________________________________

AITTJ-6011004a 207 669 c 688 a 679 b 689 a 661 d 627 e 609 f

AM11002b 207 531 a 494 b 478 c 455 d 427 e 409 g 423 f

AM11004b 207 538 a 505 f 498 g 529 c 535 b 509 e 512 d

AMDF11004b 207 533 b 499 d 525 c 538 a 527 c 499 d 489 e

AMDF11008b 207 601 d 623 a 619 b 610 c 602 d 579 e 536 f

GAT11004d 207 540 ab 543 a 541 ab 534 b 517 c 465 d 465 d

TTI11004a 207 719 f 838 d 837 d 892 a 882 b 868 c 819 e

DR11004c 207 608 f 677 a 673 a 667 b 646 c 615 e 636 d

ER11004c 207 334 a 300 b 296 bc 294 c 280 d 268 e 283 d

MR11004c 207 515 a 484 cd 480 d 495 b 490 bc 450 e 478 d

SR11004c 207 423 a 394 b 390 c 383 d 369 e 351 f 384 d

UR11004c 207 691 g 822 c 883 a 814 d 838 b 801 e 792 f

AITTJ-6011004a 276 611 c 626 a 615 bc 620 b 591 d 567 e 551 f

AM11002b 276 442 a 419 b 410 c 406 d 396 e 383 f 384 f

AM11004b 276 538 a 499 d 526 b 538 a 504 c 482 e 462 f

AMDF11004b 276 489 a 464 c 480 b 488 a 481 b 454 d 437 e

AMDF11008b 276 567 c 584 b 595 a 582 b 579 b 546 d 484 e

GAT11004d 276 507 a 505 a 496 b 490 c 460 d 426 e 413 f

TTI11004a 276 829 d 877 a 864 b 862 b 882 a 851 c 732 e

DR11004c 276 588 bc 583 cd 605 a 599 ab 589 bc 561 e 574 de

ER11004c 276 315 a 286 c 274 d 296 b 268 e 251 g 262 f

MR11004c 276 498 a 460 c 458 c 477 b 457 c 431 d 428 d

SR11004c 276 380 a 353 b 344 c 343 c 335 d 321 e 344 c

UR11004c 276 746 e 800 a 787 b 772 c 755 d 732 g 739 f

AITTJ-6011004a 414 520 b 530 a 527 a 520 b 502 c 479 d 470 e

AM11002b 414 394 a 365 c 381 b 357 d 340 e 326 g 331 f

AM11004b 414 431 a 408 c 414 b 406 c 416 b 396 d 399 d

AMDF11004b 414 411 a 393 c 395 bc 391 c 400 b 371 d 366 d

AMDF11008b 414 494 a 482 b 474 c 474 c 473 c 453 d 415 e

GAT11004d 414 378 bc 377 c 383 b 396 a 377 c 361 d 352 e

TTI11004a 414 631 d 696 a 689 ab 684 b 683 b 666 c 620 e

DR11004c 414 506 b 485 d 501 c 487 d 501 c 480 e 518 a

ER11004c 414 255 a 240 c 244 b 237 d 236 d 224 e 235 d

MR11004c 414 413 a 391 c 397 b 383 d 384 d 364 e 389 c

SR11004c 414 313 a 298 b 299 b 298 b 292 c 284 d 297 bc

UR11004c 414 703 b 747 a 633 e 627 e 681 c 658 d 666 d

a TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA.
b Greenleaf Technologies, Covington, LA, USA.
c Wilger Industries Ltd., Lexington, TN, USA.
d Pentair Hypro SHURflo plc., Minneapolis, MN, USA.
e Means within a gauge pressure and nozzle with the same letter are not significantly different (P� 0.05). Standard duty cycle refers to a sprayer

configuration with no solenoid valve equipped.
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across venturi nozzles and within gauge pressures when duty

cycle was decreased from 100 to 40%. The effect of pulsing

caused complex fluctuations in the droplet diameters across

gauge pressures and venturi nozzles as the Dv0.9 ranged from a

decrease of 10.2% to an increase of 24.0%when duty cycle was

reduced from 100 to 40%. The general trend would indicate

particle drift potential would decrease slightly from a pulsing

PWM sprayer operated with venturi nozzles; however, due to

the extreme fluctuations of the droplet size distributions and

driftable fines emitted from venturi nozzles across a range of

duty cycles and gauge pressures, this conclusion cannot be

drawn with any certainty. Greater variability within venturi

nozzle droplet size distribution measurements compared to

non-venturi nozzles was also noted in previous research

(Etheridge et al., 1999; Miller & Butler Ellis, 2000). The vari-

ability resulted in negative effects on spray pattern (Ayers,

Rogowski, & Kimble, 1990) and decreased weed control

(Etheridge, Hart, Hayes, & Mueller, 2001). The unpredictable

nature of droplet size distributions when affected by pulsing

venturi nozzles is simply unacceptable for the optimization

and homogenization of PWM sprays.

3.1.2. Non-venturi nozzles
Polynomial regressions established for non-venturi nozzles

(DR11004, ER11004, MR11004, SR11004, and UR11004) to pre-

dict the effect of duty cycle on the Dv0.5 for each gauge

Table 5 e Droplet size data such that 90% of the spray volume is contained in droplets of lesser diameter (Dv0.9) for water
impacted by duty cycle for nozzle and pressure combinations.

Nozzle Dv0.9

Duty cycle (%)e

Gauge pressure 20 40 50 60 80 100 Standard

kPa _____________________________________________________mm______________________________________________________

AITTJ-6011004a 207 948 d 997 bc 989 c 1033 a 1003 b 952 d 931 e

AM11002b 207 855 a 789 b 734 c 699 d 645 e 600 f 631 e

AM11004b 207 808 b 764 d 754 e 832 a 831 a 802 b 788 c

AMDF11004b 207 821 d 744 g 841 c 898 a 861 b 796 e 781 f

AMDF11008b 207 841 f 983 a 975 b 962 c 949 d 889 e 818 g

GAT11004d 207 828 b 852 a 853 a 831 b 829 b 713 c 704 c

TTI11004a 207 968 e 1168 d 1164 d 1312 a 1306 a 1287 b 1199 c

DR11004c 207 865 e 1043 a 1044 a 1032 a 988 b 945 d 967 c

ER11004c 207 631 a 562 b 550 b 536 c 470 d 452 e 466 d

MR11004c 207 819 a 746 cd 762 bc 789 ab 790 ab 707 e 726 de

SR11004c 207 718 a 665 b 667 b 639 c 588 e 561 f 616 d

UR11004c 207 954 g 1172 d 1356 a 1151 e 1254 b 1195 c 1136 f

AITTJ-6011004a 276 895 d 937 b 919 c 972 a 933 b 880 e 852 f

AM11002b 276 712 a 691 b 672 c 659 d 620 e 590 f 588 f

AM11004b 276 857 b 779 d 850 b 931 a 821 c 750 e 713 f

AMDF11004b 276 798 c 743 d 788 c 835 a 817 b 747 d 708 e

AMDF11008b 276 852 d 954 b 956 b 937 c 978 a 861 d 781 e

GAT11004d 276 808 a 823 a 805 a 806 a 737 b 672 c 659 c

TTI11004a 276 1233 d 1303 b 1285 c 1276 c 1344 a 1281 c 1099 e

DR11004c 276 887 b 887 b 960 a 971 a 943 a 864 b 876 b

ER11004c 276 612 a 554 b 503 c 551 b 466 d 423 f 438 e

MR11004c 276 810 a 724 c 737 bc 793 a 755 b 689 d 670 e

SR11004c 276 667 a 595 b 580 c 573 d 557 f 531 g 563 e

UR11004c 276 1084 e 1203 a 1176 b 1149 c 1112 d 1082 e 1084 e

AITTJ-6011004a 414 790 d 842 a 838 ab 832 bc 823 c 775 e 778 e

AM11002b 414 688 b 645 c 715 a 605 d 559 e 527 f 525 f

AM11004b 414 718 a 682 bc 695 b 671 c 712 a 653 d 646 d

AMDF11004b 414 685 a 649 bc 658 b 638 c 698 a 585 e 605 d

AMDF11008b 414 803 b 821 a 800 b 801 b 795 b 760 c 683 d

GAT11004d 414 614 b 597 c 598 c 668 a 618 b 578 d 571 d

TTI11004a 414 939 c 1089 a 1066 a 1063 a 1067 a 1018 b 997 b

DR11004c 414 801 b 752 d 803 b 773 c 829 a 775 c 816 ab

ER11004c 414 505 a 457 b 502 a 445 c 421 d 398 e 407 e

MR11004c 414 689 a 655 bc 666 b 630 d 639 cd 584 e 625 d

SR11004c 414 571 a 524 b 538 b 536 b 501 c 475 d 482 d

UR11004c 414 992 c 1176 a 924 d 911 d 1046 b 1007 c 1006 c

a TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA.
b Greenleaf Technologies, Covington, LA, USA.
c Wilger Industries Ltd., Lexington, TN, USA.
d Pentair Hypro SHURflo plc., Minneapolis, MN, USA.
e Means within a gauge pressure and nozzle with the same letter are not significantly different (P� 0.05). Standard duty cycle refers to a sprayer

configuration with no solenoid valve equipped.

b i o s y s t em s e ng i n e e r i n g 1 7 8 ( 2 0 1 9 ) 5 2e6 9 61

https://doi.org/10.1016/j.biosystemseng.2018.11.004
https://doi.org/10.1016/j.biosystemseng.2018.11.004


pressure are presented in Fig. 4. The resulting model param-

eters and r2 values are presented in Table 2. Similar to venturi

nozzles, as duty cycle decreased, droplet size increased across

non-venturi nozzles (Fig. 4). The non-venturi nozzles required

polynomial regressions, similar to the venturi nozzles, which

may be an indication thatmore complexmodels are needed to

appropriately fit droplet size data as affected by pulsing with

current nozzle technologies, such as pre-orifice and venturi

type nozzles, in contrast to conclusions from previous

research using only non-venturi nozzles with no pre-orifice

(Giles & Comino, 1990). On average, non-venturi models

predicted an increase in Dv0.5 as duty cycle decreased from 100

to 40% with estimated increases in Dv0.5 of 0.68, 0.62, and

0.34 mm for every 1% decrease in duty cycle for 207, 276, and

414 kPa gauge pressures, respectively. These increases in

droplet sizewere smaller than those caused by pulsing venturi

nozzles; therefore, non-venturi nozzles stabilized the droplet

size distributions more than venturi nozzles across a range of

duty cycles and would be the preferred nozzle on PWM

sprayers. Similar to venturi nozzles, although r2 values

decreased as gauge pressure increased, the increase in gauge

pressure buffered the pulsing effect on droplet size, further

Table 6 e Percent of spray volume less than 150 mm (driftable fines) for water as impacted by duty cycle for each nozzle and
pressure combination.

Nozzle Driftable fines

Duty cycle (%)e

Gauge pressure 20 40 50 60 80 100 Standard

kPa _____________________________________________________%______________________________________________________

AITTJ-6011004a 207 0.09 c 0.54 b 0.56 b 0.55 b 0.63 b 0.71 ab 0.87 a

AM11002b 207 2.90 d 2.62 f 2.78 e 3.33 c 3.97 b 4.46 a 3.23 c

AM11004b 207 2.27 b 2.55 a 2.60 a 2.16 c 1.97 d 2.33 b 1.79 e

AMDF11004b 207 2.12 b 2.32 ab 2.17 b 2.11 b 2.15 b 2.52 a 2.13 b

AMDF11008b 207 1.34 c 1.18 e 1.21 e 1.27 d 1.31 cd 1.43 b 1.48 a

GAT11004d 207 1.66 c 1.80 c 1.74 c 1.79 c 1.94 bc 2.91 a 2.16 b

TTI11004a 207 0.15 b 0.33 ab 0.34 a 0.23 ab 0.24 ab 0.25 ab 0.27 ab

DR11004c 207 1.45 a 1.11 c 1.07 c 1.06 c 1.13 c 1.31 b 0.77 d

ER11004c 207 11.78 e 14.03 cd 14.36 c 14.45 bc 15.17 b 16.60 a 13.56 d

MR11004c 207 3.16 bc 3.44 b 2.98 c 3.12 bc 3.27 bc 4.11 a 2.24 d

SR11004c 207 6.18 e 7.14 d 7.01 d 7.55 c 7.92 b 8.90 a 5.60 f

UR11004c 207 0.73 a 0.52 b 0.37 d 0.50 b 0.39 d 0.45 c 0.30 e

AITTJ-6011004a 276 0.74 f 0.86 e 0.92 de 0.97 d 1.12 c 1.21 b 1.36 a

AM11002b 276 4.49 d 4.51 d 4.72 c 4.77 c 5.03 b 5.52 a 5.08 b

AM11004b 276 2.09 e 2.61 d 2.70 cd 2.61 d 2.78 bc 2.88 ab 2.92 a

AMDF11004b 276 2.90 e 3.12 d 3.32 bc 3.18 cd 3.20 cd 3.72 a 3.39 b

AMDF11008b 276 1.45 d 1.73 c 1.53 d 1.63 c 1.70 c 1.97 b 2.36 a

GAT11004d 276 1.94 f 2.08 e 2.15 de 2.21 d 2.60 c 3.79 a 3.49 b

TTI11004a 276 0.01 d 0.25 c 0.25 c 0.25 c 0.25 c 0.29 b 0.48 a

DR11004c 276 1.32 d 1.51 c 1.52 c 1.61 b 1.65 b 1.81 a 1.28 d

ER11004c 276 13.67 d 16.09 c 17.32 b 14.26 d 17.28 b 19.32 a 16.90 bc

MR11004c 276 2.90 e 3.49 d 3.47 d 3.78 c 4.14 b 4.65 a 3.90 c

SR11004c 276 8.11 e 9.09 d 9.63 c 9.58 c 10.21 b 11.05 a 8.15 e

UR11004c 276 0.01 f 0.49 d 0.52 c 0.55 b 0.57 b 0.64 a 0.44 e

AITTJ-6011004a 414 1.66 f 1.90 e 1.91 e 2.04 d 2.34 c 2.71 b 3.03 a

AM11002b 414 7.62 e 8.48 c 7.89 d 8.52 c 9.14 b 9.93 a 8.50 c

AM11004b 414 5.07 c 5.86 ab 6.14 a 5.90 ab 5.72 b 6.18 a 5.22 c

AMDF11004b 414 5.35 d 5.89 c 6.10 bc 6.40 b 6.33 bc 7.03 a 6.43 b

AMDF11008b 414 3.18 f 3.75 e 3.92 de 3.95 cd 4.13 c 4.38 b 4.75 a

GAT11004d 414 6.45 a 5.31 c 4.97 d 4.96 d 5.54 bc 5.78 b 6.55 a

TTI11004a 414 0.81 c 0.92 bc 0.95 abc 0.95 abc 0.94 abc 1.04 ab 1.08 a

DR11004c 414 2.64 d 2.94 c 3.08 b 2.98 bc 3.09 b 3.41 a 1.95 e

ER11004c 414 21.72 d 23.82 b 22.93 c 23.86 b 24.25 b 25.58 a 22.22 d

MR11004c 414 5.75 d 6.52 c 6.71 c 6.79 bc 7.02 b 7.76 a 5.34 e

SR11004c 414 13.35 bc 14.15 b 14.26 ab 13.93 b 14.58 ab 15.42 a 12.17 c

UR11004c 414 1.06 ab 0.86 bc 1.05 ab 1.05 ab 1.04 ab 1.14 a 0.70 c

a TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA.
b Greenleaf Technologies, Covington, LA, USA.
c Wilger Industries Ltd., Lexington, TN, USA.
d Pentair Hypro SHURflo plc., Minneapolis, MN, USA.
e Means within a gauge pressure and nozzle with the same letter are not significantly different (P� 0.05). Standard duty cycle refers to a sprayer

configuration with no solenoid valve equipped.
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validating PWM sprayers should be operated at greater gauge

pressures (�276 kPa) as much as drift mitigation efforts allow.

The Dv0.1, Dv0.5, D0.9, and driftable fines emitted from non-

venturi nozzles as affected by PWM duty cycle are presented

in Table 3 through 6. Across duty cycles, the droplet size dis-

tributions from non-venturi nozzles followed the pattern

(from smallest to greatest): ER11004 < SR11004 <
MR11004 < DR11004 < UR11004 (Tables 3e5). Driftable fines

emitted from non-venturi nozzles followed the inverse

pattern across duty cycles (Table 6). These trends were ex-

pected according to the nozzle manufacturer's catalogue. For

reference, the spray classifications were Medium, Medium,

Coarse, Extremely Coarse, and Extremely Coarse for the

ER11004, SR11004, MR11004, DR11004, and UR11004 nozzles,

respectively, at 276 kPa. In previous PWM literature, only non-

venturi nozzles with no pre-orifice were evaluated (Giles &

Comino, 1990; Giles et al., 1996, pp. 23e26). For the non-

venturi nozzles evaluated in this research, four out of five

(SR11004, MR11004, DR11004, and UR11004) had pre-orifices,

and little to no difference was observed in the droplet size

trends when pulsed between the non-venturi nozzles with

pre-orifices and the non-venturi nozzle without a pre-orifice

(ER11004).

The addition of an inline solenoid valve caused a decrease in

droplet size when operated at a 100% duty cycle compared to

the standard configuration (no solenoid valve equipped) within

Table 7 e Average nozzle tip pressure over five seconds for water as impacted by nozzle for each gauge pressure and duty
cycle combination.

Nozzle Average nozzle tip pressure

Duty cycle (%)e

Gauge pressure 20 40 50 60 80 100 Standard
_______________________________________________________________ kPa __________________________________________________________

AITTJ-6011004a 207 36 bc 67 bc 83 bc 95 cd 137 d 194 i 210 b

AM11002b 207 58 a 106 a 127 a 148 a 196 a 216 a 213 a

AM11004b 207 39 b 78 ab 99 ab 118 abc 172 bc 202 f 204 g

AMDF11004b 207 39 b 77 b 95 b 114 bc 152 cd 199 g 207 e

AMDF11008b 207 27 c 55 c 70 c 86 d 117 e 164 j 197 i

GAT11004d 207 35 bc 70 bc 86 bc 103 bcd 157 bc 196 h 209 c

TTI11004a 207 41 ab 81 ab 100 ab 118 abc 160 bc 203 f 208 d

DR11004c 207 41 ab 80 ab 98 ab 116 abc 161 bc 205 d 207 e

ER11004c 207 41 ab 80 ab 97 ab 122 ab 175 ab 206 c 205 f

MR11004c 207 42 ab 81 ab 98 ab 121 ab 166 bc 207 b 208 d

SR11004c 207 40 b 77 b 96 b 119 abc 157 bc 204 e 203 h

UR11004c 207 40 b 79 ab 98 ab 115 bc 163 b 204 e 208 d

AITTJ-6011004a 276 47 bcd 88 bc 107 bcd 138 bcd 197 bc 260 g 279 b

AM11002b 276 66 a 121 a 149 a 178 a 235 a 276 a 277 c

AM11004b 276 56 abc 103 abc 130 abc 147 abc 202 b 256 i 274 f

AMDF11004b 276 65 ab 110 ab 137 ab 164 ab 222 ab 273 b 279 b

AMDF11008b 276 39 d 78 c 94 d 111 d 153 d 208 j 268 g

GAT11004d 276 46 cd 85 bc 104 cd 122 cd 175 c 258 h 277 c

TTI11004a 276 57 abc 108 ab 134 abc 160 ab 220 ab 265 d 276 de

DR11004c 276 55 abc 104 abc 128 abc 158 ab 209 ab 266 c 283 a

ER11004c 276 55 abc 107 ab 134 abc 162 ab 222 ab 261 f 275 ef

MR11004c 276 55 abc 107 ab 133 abc 159 ab 222 ab 266 c 283 a

SR11004c 276 51 abcd 104 abc 130 abc 156 ab 206 b 265 d 276 d

UR11004c 276 54 abcd 106 ab 129 abc 151 abc 211 ab 264 e 278 b

AITTJ-6011004a 414 69 bc 132 b 160 bc 202 bc 293 b 392 i 409 f

AM11002b 414 105 a 189 a 231 a 278 a 368 a 427 a 418 b

AM11004b 414 81 ab 158 ab 196 ab 235 abc 315 ab 400 f 419 a

AMDF11004b 414 81 ab 158 ab 196 ab 236 abc 317 ab 399 g 419 a

AMDF11008b 414 55 c 121 b 143 c 184 c 246 c 337 j 409 f

GAT11004d 414 63 bc 127 b 160 bc 201 bc 292 b 400 fg 409 f

TTI11004a 414 81 ab 160 ab 199 ab 240 abc 319 ab 404 d 418 b

DR11004c 414 82 ab 161 ab 199 ab 240 abc 320 ab 405 c 416 c

ER11004c 414 80 abc 158 ab 196 ab 234 abc 311 b 402 e 411 e

MR11004c 414 84 ab 162 ab 203 ab 242 ab 326 ab 410 b 418 b

SR11004c 414 79 abc 156 ab 192 abc 232 abc 309 b 398 h 413 d

UR11004c 414 82 ab 161 ab 199 ab 236 abc 323 ab 405 c 416 c

a TeeJet Technologies, Spraying Systems Co., Glendale Heights, IL, USA.
b Greenleaf Technologies, Covington, LA, USA.
c Wilger Industries Ltd., Lexington, TN, USA.
d Pentair Hypro SHURflo plc., Minneapolis, MN, USA.
e Means within a gauge pressure and duty cycle with the same letter are not significantly different (P � 0.05). Standard duty cycle refers to a

sprayer configuration with no solenoid valve equipped.
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gauge pressures and across most non-venturi nozzles. This

result was peculiar as the nozzle tip pressure data, discussed in

detail later in this manuscript, revealed a decrease in pressure

across the solenoid valve. Flow rates of non-venturi nozzles

across gauge pressures were measured to determine if flow

rates were increasing through a solenoid valve to explain the

droplet size decrease (data not shown). The addition of a so-

lenoid valve operated at a 100% duty cycle decreased flow rate

by approximately 5% compared to the standard configuration,

matching the nozzle tip pressure reductions observed from the

addition of a solenoid valve (Table 7). Therefore, this does not

explain the decrease in droplet size from non-venturi nozzles

Fig. 5 e Fluctuations in nozzle tip pressure (kPa) over 0.5 s for a gauge pressure of 276 kPa with water spray solution as

influenced by duty cycle for the AITTJ-6011004 (top left), AM11002 (top right), AM11004 (middle left), AMDF11004 (middle

right), AMDF11008 (bottom left), and GAT11004 (bottom right) nozzles. The solid black bar indicates the 276 kPa gauge

pressure.
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operated at a 100% duty cycle compared to a standard config-

uration and further research should be conducted to identify

the underlying cause. Overall, the decrease in droplet size in-

dicates PWM sprayers operating with non-venturi nozzles at

high duty cycles increase spray drift potential slightly

compared to conventional sprayers. However, this increase in

spray drift potential is minimal, especially when compared to

the drift potential increases observed from conventional

sprayers implementing similar flow rate changes (Giles,

Downey, Kolb, & Grimm, 2003).

The Dv0.1 and D0.9 generally increased as duty cycle

decreased across non-venturi nozzles and gauge pressures

similar to the model predictions for the Dv0.5. The Dv0.1 and

Dv0.9 increased by an average of 6.0 and 9.6%, respectively,

within gauge pressures and across non-venturi nozzles when

the duty cycle was reduced from 100 to 40%. The non-venturi

Fig. 6 e Fluctuations in nozzle tip pressure (kPa) over 0.5 s for a gauge pressure of 276 kPa with water spray solution as

influenced by duty cycle for the TTI11004 (top left), DR11004 (top right), ER11004 (middle left), MR11004 (middle right),

SR11004 (bottom left), and UR11004 (bottom right) nozzles. The solid black bar indicates the 276 kPa gauge pressure.
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nozzle droplet size distributions fluctuated when pulsed, but

not as great as the venturi nozzles, as the Dv0.9 values ranged

from a decrease of 3.1% to an increase of 23.6% when the duty

cycle was reduced from 100 to 40%. The driftable fines were

reduced by 0.0e3.2 percentage points across non-venturi

nozzles and within gauge pressures as the duty cycle

decreased from 100 to 40% indicating the pulsing of PWM

sprayers can reduce particle drift potential. Overall, droplet

size distributions from non-venturi nozzles were more stable

and homogenous when pulsed compared to venturi nozzles,

Fig. 7 eNozzle tip pressure of 12 nozzles when sprayingwater in a standard nozzle body configuration (no solenoid valve) at

207 kPa (top left), 276 kPa (middle left), and 414 kPa (bottom left) and at a 100% duty cycle in a pulsing nozzle body

configuration (with solenoid valve) at 207 kPa (top right), 276 kPa (middle right), and 414 kPa (bottom right). The solid black

bar indicates the respective gauge pressure.
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and the addition of a pre-orifice had little to no impact on the

droplet size trends observed across PWM duty cycles. There-

fore, non-venturi nozzles with or without pre-orifices are

recommended for use on PWM sprayers to stabilize droplet

size distributions across a range of duty cycles, and a 40% duty

cycle or greater should be utilized to optimize and homoge-

nize PWM pesticide applications, especially for site-specific

pest management strategies requiring an explicit droplet size.

3.2. Nozzle tip pressure

Visual assessments of nozzle tip pressure patterns across duty

cycles revealed minimal deviations from the square wave

PWM electrical signal pattern due to gauge pressure changes.

Nozzle tip pressure measurements over time at the 276 kPa

gauge pressure are presented in Figs. 5 and 6. They illustrate

PWM duty cycles operating at the 10 Hz frequency and that

nozzle tip pressures do not follow the square wave electrical

signal pattern explicitly, especially across nozzle types (Figs. 5

and 6). Some of the pressure measurement variability can be

attributed to the single nozzle/spray solution supply line used

for testing (Fig. 1). Commercial systems buffer this effect by

placing multiple solenoid valves, operating on alternate fre-

quencies, on a similar supply line or boom section (Mangus

et al., 2017). Nozzle tip pressure peaks and valleys emerged

for venturi nozzles, excluding the AMDF11008 and TTI11004,

compared to non-venturi nozzles. Additionally, the AITTJ-

6011004 and GAT11004 venturi nozzles had severe de-

formities in nozzle tip pressure measurement patterns when

pulsed. This is likely due to the nozzle design of each as the

AITTJ-6011004 and GAT11004 have a single pre-orifice with

dual fan exit orifices which is unique compared to other

nozzles tested. Although these pressure fluctuation de-

formities did not influence droplet size to a great extent, spray

pattern could be highly affected, and should be evaluated in

future research.

The average nozzle tip pressure measurement trends

across duty cycle were unaffected by gauge pressure (Table 7).

Nozzle design and orifice size impacted the nozzle tip pres-

sure measurements across gauge pressures and duty cycles.

When the PWMduty cyclewas reduced from100% to a specific

duty cycle, the average nozzle tip pressure reduction should

have been equivalent to the duty cycle reduction (i.e. if the

duty cycle were reduced from 100 to 50%, the average nozzle

tip pressure at the 50% duty cycle should be half of the nozzle

tip pressure at the 100% duty cycle). When nozzle orifice size

decreased (AM11002), the percent change in average nozzle tip

pressure was less than expected (54%) across gauge pressures

if duty cycle was reduced by 60%. In contrast, when nozzle

orifice size increased (AMDF11008), the percent change in

average nozzle tip pressure was greater than expected (64%)

across gauge pressures if duty cycle was reduced by 60%. The

AITTJ-6011004 and GAT11004 nozzles again had larger dis-

turbances in their nozzle tip pressure patterns compared to

other nozzles. The percent change in average nozzle tip

pressure for the AITTJ-6011004 and GAT11004 was greater

than expected, 66% for both nozzles across gauge pressures, if

duty cycle was reduced by 60%. Other nozzles tested had a

percent change in average nozzle tip pressure of 60% across

gauge pressures if duty cycle was reduced 60%.

Measurements further revealed a reduction in nozzle tip

pressure as orifice size increased and when the dual fan,

single pre-orifice venturi nozzles (AITTJ-6011004 and

GAT11004) were equipped and operated at a 100% duty cycle

compared to a standard configuration with no solenoid valve

equipped (Fig. 7). The AITTJ-6011004, AMDF11008, and

GAT11004 had the lowest average nozzle tip pressures and the

AM11002 had the greatest average nozzle tip pressure

compared to other nozzles across gauge pressures when a

solenoid valve was equipped. The greatest pressure reduction

observed was for the AMDF11008 which had a loss in pressure

of nearly 75 kPa. These pressure losses are likely produced by

a restriction within the solenoid valve; therefore, maximum

flow is restricted especially with greater orifice sizes (flow

rates), and a low pressure area is created on the exit side of the

solenoid. Commercial PWM systems adjust for this pressure

loss with an increase in calculated duty cycle to maintain the

appropriate output. However, applicators shouldmake note of

this pressure loss, as several negative impacts may arise from

this finding: (1) the reduced pressure at the nozzle increases

droplet size compared to what would be expected from the

input gauge pressure, and reductions in biological efficacy

may occur, especially in droplet size oriented site-specific pest

management strategies; (2) if PWM sprayers were operated at

low gauge pressures, the pressure loss may result in nozzles

being operated below nozzle manufacturer's recommended

pressure ranges; and (3) the reduced nozzle pressuremay lead

to incomplete pattern formation, especially when pulsed,

resulting in reduced efficacy and inefficient applications.

4. Conclusions

The effectiveness of site-specific pest management strategies

relies on two factors, (1) maximizing the biological effect, and

(2) minimizing environmental contamination through off-

target spray movement. Spray droplet size is a critical

component to influence these two factors simultaneously. If

spray droplet size is to be optimized and homogenized across

a PWM application, the following best use practices should be

followed:

1. PWM sprayers should be operated at or above a 40%

duty cycle. Droplet size was severely affected and the

pattern of change was inconsistent when pulsed at the

20% duty cycle tested in this research.

2. PWM sprayers should be operated at or above 276 kPa

gauge pressure. This practice buffers the pulsing impact

on droplet size and remains above nozzle manufac-

turers' recommended pressures due to the pressure loss

across the solenoid valve.

3. Only non-venturi nozzles should be equipped and

operated on PWM sprayers. These nozzle types, with

and without pre-orifices, minimize variation in droplet

size and nozzle tip pressure across duty cycles

compared with venturi nozzles.

Applicators using a PWM sprayer should also acknowledge

the pressure loss across the solenoid valve. The decreased

pressure, especially for greater orifice size nozzles, could
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affect spray pattern and create coarser droplet sizes than

desired for biological control. Further, as PWM duty cycle de-

creases, spray droplet size increases, thereby potentially

impacting spray coverage and the resulting biological efficacy.

Across non-venturi nozzles and gauge pressures, droplet size

(Dv0.5) increased by approximately 0.55 mm for every 1%

decrease in duty cycle. Spray solution changed the overall

droplet sizes observed; however, the effect of pulsing had little

to no impact on the droplet size trends observed across duty

cycles for the solutions tested. Through these practices, ap-

plicators can increase the efficiency of PWM pesticide appli-

cations and reduce the risks of off-target spray particle

movement by better understanding the complexities of spray

applications.
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