101,848 research outputs found

    Ionization of ions

    Get PDF
    Charged particle binary encounter model modified for evaluating ionization cross section of positive ions by electron impac

    A Lattice QCD Analysis of the Strangeness Magnetic Moment of the Nucleon

    Get PDF
    The outcome of the SAMPLE Experiment suggests that the strange-quark contribution to the nucleon magnetic moment, G_M^s(0), may be greater than zero. This result is very difficult to reconcile with expectations based on the successful baryon magnetic-moment phenomenology of the constituent quark model. We show that careful consideration of chiral symmetry reveals some rather unexpected properties of QCD. In particular, it is found that the valence u-quark contribution to the magnetic moment of the neutron can differ by more than 50% from its contribution to the Xi^0 magnetic moment. This hitherto unforeseen result leads to the value G_M^s(0) = -0.16 +/- 0.18 with a systematic error, arising from the relatively large strange quark mass used in existing lattice calculations, that would tend to shift G_M^s(0) towards small positive values.Comment: RevTeX, 20 pages, 12 figure

    Phase transition from quark-meson coupling hyperonic matter to deconfined quark matter

    Get PDF
    We investigate the possibility and consequences of phase transitions from an equation of state (EOS) describing nucleons and hyperons interacting via mean fields of sigma, omega, and rho mesons in the recently improved quark-meson coupling (QMC) model to an EOS describing a Fermi gas of quarks in an MIT bag. The transition to a mixed phase of baryons and deconfined quarks, and subsequently to a pure deconfined quark phase, is described using the method of Glendenning. The overall EOS for the three phases is calculated for various scenarios and used to calculate stellar solutions using the Tolman-Oppenheimer-Volkoff equations. The results are compared with recent experimental data, and the validity of each case is discussed with consequences for determining the species content of the interior of neutron stars.Comment: 12 pages, 14 figures; minor typos correcte

    A uvbyCaHbeta CCD Analysis of the Open Cluster Standard, NGC 752

    Get PDF
    Precision uvbyCaHbeta photometry of the nearby old open cluster, NGC 752, is presented. The mosaic of CCD fields covers an area ~42' on a side with internal precision at the 0.005 to 0.010 mag level for the majority of stars down to V~15. The CCD photometry is tied to the standard system using an extensive set of published photoelectric observations adopted as secondary standards within the cluster. Multicolor indices are used to eliminate as nonmembers a large fraction of the low probability proper-motion members near the faint end of the main sequence, while identifying 24 potential dwarf members between V=15.0 and 16.5, eight of which have been noted before from Vilnius photometry. From 68 highly probable F dwarf members, we derive a reddening estimate of E(b-y)= 0.025 +/- 0.003 (E(B-V) = 0.034 +/- 0.004), where the error includes the internal photometric uncertainty and the systematic error arising from the choice of the standard (b-y), Hbeta relation. With reddening fixed, [Fe/H] is derived from the F dwarf members using both m_1 and hk, leading to [Fe/H] = -0.071 +/-0.014 (sem) and -0.017 +/- 0.008 (sem), respectively. Taking the internal precision and possible systematics in the standard relations into account, [Fe/H] for NGC 752 becomes -0.03 +/-0.02. With the reddening and metallicity defined, we use the Victoria-Regina isochrones on the Stromgren system and find an excellent match for (m-M) = 8.30 +/- 0.05 and an age of 1.45 +/- 0.05 Gyr at the appropriate metallicity.Comment: 37 pages, 11 figures, 4 tables. Accepted to Astronomical Journa

    Electroweak Bremsstrahlung in Dark Matter Annihilation

    Full text link
    A conservative upper bound on the total dark matter (DM) annihilation rate can be obtained by constraining the appearance rate of the annihilation products which are hardest to detect. The production of neutrinos, via the process χχ→ΜˉΜ\chi \chi \to \bar\nu \nu , has thus been used to set a strong general bound on the dark matter annihilation rate. However, Standard Model radiative corrections to this process will inevitably produce photons which may be easier to detect. We present an explicit calculation of the branching ratios for the electroweak bremsstrahlung processes χχ→ΜˉΜZ\chi \chi \to \bar\nu \nu Z and χχ→ΜˉeW\chi \chi \to \bar\nu e W. These modes inevitably lead to electromagnetic showers and further constraints on the DM annihilation cross-section. In addition to annihilation, our calculations are also applicable to the case of dark matter decay.Comment: 7 pages, 4 figures. New appendix with an extensive discussion of Majorana fermions and helicity suppression

    Precise determination of the strangeness magnetic moment of the nucleon

    Get PDF
    By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent low mass lattice QCD simulations of the individual quark contributions to the magnetic moments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the proton. The result, namely G_M^s = -0.046 +/- 0.019 mu_N, is consistent with the latest experimental measurements but an order of magnitude more precise. This poses a tremendous challenge for future experiments.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Lett. Clairification of manuscript and improved correlation function analysi

    Picosecond time-resolved pure-rotational coherent anti-Stokes Raman spectroscopy for N-2 thermometry

    Get PDF
    This paper was published in Optics Letters and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=ol-34-23-3755. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law.Peer reviewedPublisher PD

    Extracting nucleon strange and anapole form factors from world data

    Get PDF
    The complete world set of parity violating electron scattering data up to Q^2~0.3 GeV^2 is analysed. We extract the current experimental determination of the strange electric and magnetic form factors of the proton, as well as the weak axial form factors of the proton and neutron, at Q^2 = 0.1 GeV^2. Within experimental uncertainties, we find that the strange form factors are consistent with zero, as are the anapole contributions to the axial form factors. Nevertheless, the correlation between the strange and anapole contributions suggest that there is only a small probability that these form factors all vanish simultaneously.Comment: 4 pages, 3 figs; v2: version to appear in PR

    Introduction to the new usability

    Get PDF
    This paper introduces the motivation for and concept of the "new usability" and positions it against existing approaches to usability. It is argued that the contexts of emerging products and systems mean that traditional approaches to usability engineering and evaluation are likely to prove inappropriate to the needs of "digital consumers." The paper briefly reviews the contributions to this special issue in terms of their relation to the idea of the "new usability" and their individual approaches to dealing with contemporary usability issues. This helps provide a background to the "new usability" research agenda, and the paper ends by posing what are argued to be the central challenges facing the area and those which lie at the heart of the proposed research agenda

    Pencil-Beam Surveys for Faint Trans-Neptunian Objects

    Get PDF
    We have conducted pencil-beam searches for outer solar system objects to a limiting magnitude of R ~ 26. Five new trans-neptunian objects were detected in these searches. Our combined data set provides an estimate of ~90 trans-neptunian objects per square degree brighter than ~ 25.9. This estimate is a factor of 3 above the expected number of objects based on an extrapolation of previous surveys with brighter limits, and appears consistent with the hypothesis of a single power-law luminosity function for the entire trans-neptunian region. Maximum likelihood fits to all self-consistent published surveys with published efficiency functions predicts a cumulative sky density Sigma(<R) obeying log10(Sigma) = 0.76(R-23.4) objects per square degree brighter than a given magnitude R.Comment: Accepted by AJ, 18 pages, including 6 figure
    • 

    corecore