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By combining the constraints of charge symmetry with new chiral extrapolation techniques and recent
low mass quenched lattice-QCD simulations of the individual quark contributions to the magnetic mo-
ments of the nucleon octet, we obtain a precise determination of the strange magnetic moment of the
proton. The result, namely, Gs

M���0:046�0:019��N is consistent with the latest experimental measure-
ments but an order of magnitude more precise. This poses a tremendous challenge for future experiments.
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FIG. 1. Diagrams illustrating the two topologically different
insertions of the current within the framework of lattice QCD.
There is currently enormous interest in the determina-
tion of the strangeness content of the nucleon. It is crucial
to our understanding of QCD to determine precisely the
role played by heavier, nonvalence flavors. On the experi-
mental side new results on strangeness in the nucleon have
been reported recently from Jefferson Laboratory (JLab)
(HAPPEX) [1] and MIT-Bates (SAMPLE) [2]. In the near
future we can expect even more precise results from the A4
experiment at Mainz as well as G0 and HAPPEX2 at JLab.
By contrast, the theoretical situation is somewhat con-
fused, with the predictions of various quark models cover-
ing an enormous range. Direct calculations within lattice
QCD have not yet helped to clarify the situation, with
values for Gs

M ranging from �0:28� 0:10 [3] to �0:05�
0:06 [4].

We take a different approach, exploiting the advances in
lattice QCD which have enabled quenched QCD (QQCD)
simulations of magnetic moments at pion masses as low as
0.3–0.4 GeV [5–8], as well as the development of new
chiral extrapolation techniques [9,10]. Using these tech-
niques we determine, in full QCD, the ratios of the valence
u quark contribution to the magnetic moment of the physi-
cal proton to that in the 	� and of the valence u quark in
the physical neutron to that in the 
0. From these ratios,
the experimental values of the octet moments and charge
symmetry we deduce a new theoretical value for Gs

M which
is precise: setting a tremendous challenge for the next
generation of parity violation experiments.

As illustrated in Fig. 1, the three-point function required
to extract a magnetic moment in lattice QCD involves two
topologically distinct processes. (Of course, in full QCD
these diagrams incorporate an arbitrary number of gluons
and quark loops.) The left-hand diagram illustrates the
connected insertion of the current to one of the ‘‘valence’’
quarks of the baryon. In the right-hand diagram the exter-
nal field couples to a quark loop. The latter process, where
the loop involves an s quark, is entirely responsible for Gs

M.
Under the assumption of charge symmetry [11], the

magnetic moments of the octet baryons satisfy [12]
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Here, p and 
� are the physical magnetic moments of the
proton and 
�, and similarly for the other baryons. The
valence u quark sector magnetic moment in the proton,
corresponding to the left-hand side of Fig. 1, is denoted up.
Charge symmetry has been used to replace the d quark
contribution in the neutron by up, d in the 	� by u in the
	� (u	), and so on. The labels on quark magnetic mo-
ments allow for the environment sensitivity implicit in
the three-point function [12,13]. That is, the naive expec-
tations of the constituent quark model, namely up=u	 �

un=u
 � 1, may not be satisfied. The total contribution
from quark loops, ON , contains sea-quark-loop contribu-
tions (right-hand side of Fig. 1) from u, d, and s quarks. By
definition

ON �
2

3
lGu

M �
1

3
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where the ratio of s to d quark loops, lRs
d � lGs

M=
lGd

M, is
expected to lie in the range (0,1). In deriving Eq. (3), we
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have used charge symmetry to set lGu
M � lGd

M. Since the
chiral coefficients for the d and s loops in the right-hand
side of Fig. 1 are identical, the main difference comes from
the mass of the K compared with that of the �.

With a little algebra ON , and hence Gs
M��

lGs
M�, may be

isolated from Eqs. (1) and (3)
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Incorporating the experimentally measured baryon mo-
ments [14], Eqs. (4) and (5) become
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� lRs
d

1� lRs
d

��
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up
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�
�N; (6)
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These expressions for Gs
M are exact consequences of QCD,

under the assumption of charge symmetry.
Equating (6) and (7) provides a linear relationship be-

tween up=u	 and un=u
, which must be satisfied within
QCD under the assumption of charge symmetry. Figure 2
displays this relationship. Since this line does not pass
through the point (1.0,1.0), corresponding to the simple
quark model assumption of universality, there must be an
environment effect exceeding 12% in both ratios or ap-
proaching 20% or more in at least one of the ratios. A
positive value for Gs

M�0� would require an environment
sensitivity exceeding 70% in the un=u
 ratio.

The numerical simulations of the electromagnetic
form factors presented here are carried out using the fat
link irrelevant clover (FLIC) fermion action [5,6] in which
FIG. 2 (color online). The constraint [dashed line Gs
M�0�< 0,

solid line Gs
M�0�> 0] on the ratios up=u	 and un=u
 implied by

charge symmetry and experimental moments. Experimental un-
certainties are indicated by the dotted bounds. The assumption of
environment independent quark moments is indicated by the
crossed square. Our final result (chiral corrected extrapolation of
lattice results) is illustrated by the filled square on the charge
symmetry line.

21200
the irrelevant operators, introduced to remove fermion
doublers and lattice spacing artifacts, are constructed
with APE smeared links [15]. Perturbative renormaliza-
tions are small for smeared links and the mean-field im-
proved coefficients used here are sufficient to remove O�a�
errors from the lattice fermion action [16].

The O�a�-improved conserved vector current [17] is
used. Nonperturbative improvement is achieved via the
FLIC procedure, where the terms of the Noether current
having their origin in the irrelevant operators of the fer-
mion action are constructed with mean-field improved
APE smeared links. The results presented here are obtained
using established techniques [18] from a sample of 400
203 � 40 mean-field O�a2�-improved Luscher-Weisz [19]
gauge field configurations having a lattice spacing of
0.128 fm, determined by the Sommer scale r0 � 0:49 fm.

One of the major challenges in connecting lattice calcu-
lations of hadronic properties with the physical world [20]
is that currently accessible quark masses are much larger
than the physical values. Our present analysis has been
made possible by a significant breakthrough in the regu-
larization of the chiral loop contributions to hadron ob-
servables [9,10,21]. Through the process of regulating loop
integrals via a finite-range regulator (FRR) [9,22], the
chiral expansion is effectively resummed to produce an
expansion with vastly improved convergence properties. In
particular, we extrapolate FLIC fermion calculations of the
valence quark contributions to baryon moments (up, un,
u	, u
) to the physical mass regime. We select the dipole-
vertex FRR with � � 0:8 GeV, which yields the best
simultaneous description of both quenched and dynamical
simulation results [23].

Separation of the valence and sea-quark-loop contribu-
tions to the meson cloud of full QCD hadrons is a nontrivial
task. We use the diagrammatic method for evaluating the
quenched chiral coefficients of leading nonanalytic (LNA)
terms in heavy-baryon quenched chiral perturbation theory
(Q�PT) [24,25]. The valence contributions (key to this
analysis) are obtained by removing the direct-current cou-
pling to sea-quark loops from the total contributions. Upon
further removal of ‘‘indirect sea-quark-loop’’ contribu-
tions, where a valence quark forms a meson composed
with a sea-quark loop, one obtains the ‘‘quenched valence’’
contributions, the conventional view of the quenched
approximation.

Figure 3 displays the diagrams providing the leading
contributions to the chiral expansion of baryon magnetic
moments (upper diagrams) and their associated quark
flows in QQCD. The associated chiral expansion for the
proton magnetic moment �p is

�p � a�0 ��p��0I�0 �m�;�� � ��BIB�m�;��

� �KBIB�mK;�� � a�2 m
2
� � a�4 m

4
�; (8)

where the repeated index B sums over allowed baryon octet
and decuplet intermediate states. Loop integrals denoted
by I are defined by
1-2



FIG. 4 (color online). The contribution of a single u quark
(with unit charge) to the magnetic moment of the proton. Lattice
simulation results (square symbols for m2

� > 0:05 GeV) are
extrapolated to the physical point (vertical dashed line) in
finite-volume QQCD as well as infinite-volume QQCD, valence,
and full QCD; see text for details. Extrapolated values at the
physical pion mass (vertical dashed line) are offset for clarity.

FIG. 5 (color online). Correcting Q�PT (upper) to the valence
sector of full QCD (lower diagrams). We remove quenched
negative-metric �0 contributions and adjust the chiral coeffi-
cients of � and K loops to account for the coupling of a valence
quark to the photon in a meson made from a sea-quark loop.
Coupling to the antiquark in the bottom-right diagram is also
included in the valence contribution of full QCD.

FIG. 3 (color online). Diagrams providing the leading contri-
butions to the chiral expansion of baryon magnetic moments
(upper diagrams) and their associated quark flows (lower dia-
grams) in QQCD.
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where �BN is the relevant baryon mass splitting and
u�k;�� is the dipole-vertex regulator. The coefficients �
denote the known model-independent coefficients of the
LNA term for � and K mesons [25,26]. We take m2

K �

m�0�2
K � 1

2m
2
�, and use the physical values to define m�0�

K .
The m4

� term in Eq. (8) allows for some curvature associ-
ated with the Dirac moment of the baryon, which should go
as 1=m2

� for moderately large quark masses.
Figure 4 illustrates a fit of FRR Q�PT to the FLIC

fermion lattice results (solid curve), where only the dis-
crete momenta allowed in the finite volume of the lattice
are summed in performing the loop integral. The long-
dashed curve that also runs through the lattice results
corresponds to replacing the discrete sum by the infinite-
volume, continuous momentum integral. For all but the
lightest quark mass, finite-volume effects are negligible.

The coefficients of the residual expansion, a�0 , a�2 , a�4 ,
show excellent signs of convergence. For example, the fit
to u	 yields values 1.48(7), �0:90�23�, and 0.42(19) in
appropriate powers of GeV, respectively. Incorporating
baryon mass splittings into the kaon loop contributions is
essential, e.g., the contribution of 	 ! NK is almost
doubled when the 	� N mass splitting is included.

Figure 5 illustrates the considerations in correcting the
quenched u quark contribution to yield the valence u quark
contribution in full QCD. The removal of quenched �0

contributions and the appropriate adjustment of � and K
loop coefficients [24–26] provides the dot-dashed curve of
Fig. 4. This is our best estimate of the valence u quark
contribution (connected insertion) to the proton magnetic
moment of full QCD. Finally, the disconnected insertion of
the current is included to estimate the total contribution of
the u quark sector to the proton magnetic moment [24–26]
21200
(fine dash-dotted curve in Fig. 4). Figure 6 displays similar
results for the 	�.

From these chiral extrapolations, we estimate the ratios
of the valence (connected) u quark contributions, up=u	

and un=u
. The final results

up

u	
� 1:092� 0:030;

un

u

� 1:254� 0:124; (11)

are plotted in Fig. 2. The precision of these results follows
from the use of correlated ratios of moments which act to
reduce uncertainties associated with the lattice spacing, the
regulator mass, and statistical fluctuations [27]. This result
leaves no doubt that Gs

M is negative. The fact that this point
lies exactly on the constraint curve is highly nontrivial, and
provides a robust check of the validity of the analysis
techniques presented here.

As a further check, in Fig. 7 we compare the lattice-
QCD predictions of the baryon magnetic moments con-
structed from chirally corrected extrapolations of the indi-
vidual quark sectors. The results display an unprecedented
level of agreement with experiment. We note that the
1-3



FIG. 6 (color online). The contribution of a single u quark
(with unit charge) to the magnetic moment of the 	�. Curves
and symbols are as for Fig. 4.
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experimental constraints on u	 and u
 emphasized by
Wong [28] are both satisfied precisely.

While Gs
M is most certainly negative, it remains to set

the magnitude. This requires an estimate of the strange to
light sea-quark-loop contributions, lRs

d. Earlier estimates
of lRs

d were based on the constituent quark model. A more
reliable approach is to estimate the loops using the same
successful model invoked to correct the quenched results to
full QCD [10,23], as illustrated in Fig. 7. Allowing the
dipole mass parameter to vary between 0.6 and 1.0 GeV
provides lRs

d � Gs
M=G

d
M � 0:139� 0:042. A complete

analysis of the errors associated with the determination
of Gs

M using Eqs. (4), (5), and (11) is reported in
Ref. [27]. The uncertainty is dominated by the statistical
errors included in Eq. (11) and the uncertainty just noted
for lRs

d. The final result for the strangeness magnetic mo-
ment of the nucleon is
FIG. 7 (color online). The 1 standard deviation agreement
between the FRR�PT corrected lattice simulation results (�)
and the experimentally measured baryon magnetic moments
(�). Quenched (�) and finite-volume quenched (�) results
are also illustrated.

21200
Gs
M � ��0:046� 0:019��N: (12)

This precise value sets a tremendous challenge for the next
generation of parity violation experiments.
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