316 research outputs found

    Real-Time Decreased Sensitivity to an Audio-Visual Illusion during Goal-Directed Reaching

    Get PDF
    In humans, sensory afferences are combined and integrated by the central nervous system (Ernst MO, Bülthoff HH (2004) Trends Cogn. Sci. 8: 162–169) and appear to provide a holistic representation of the environment. Empirical studies have repeatedly shown that vision dominates the other senses, especially for tasks with spatial demands. In contrast, it has also been observed that sound can strongly alter the perception of visual events. For example, when presented with 2 flashes and 1 beep in a very brief period of time, humans often report seeing 1 flash (i.e. fusion illusion, Andersen TS, Tiippana K, Sams M (2004) Brain Res. Cogn. Brain Res. 21: 301–308). However, it is not known how an unfolding movement modulates the contribution of vision to perception. Here, we used the audio-visual illusion to demonstrate that goal-directed movements can alter visual information processing in real-time. Specifically, the fusion illusion was linearly reduced as a function of limb velocity. These results suggest that cue combination and integration can be modulated in real-time by goal-directed behaviors; perhaps through sensory gating (Chapman CE, Beauchamp E (2006) J. Neurophysiol. 96: 1664–1675) and/or altered sensory noise (Ernst MO, Bülthoff HH (2004) Trends Cogn. Sci. 8: 162–169) during limb movements

    The developmental vitamin D (DVD) model of schizophrenia

    Get PDF
    It is now widely acknowledged that exposure to adverse environmental factors in utero may not only affect how the brain develops but have long-lasting consequences for later brain function in the adult offspring. This idea has gained particular prominence amongst researchers interested in the etiology of neurodevelopmental disorders such as schizophrenia and autism. Approximately 10 years ago we proposed that developmental vitamin D (DVD) deficiency may explain several epidemiological features of this disease, most noticeably the winter/spring season of birth effect. In 2003 we published results from our first study indicating there were structural changes in how the brain develops in these offspring. Since then we have firmly established that DVD deficiency not only affects brain cell differentiation and gross anatomy but also produces alterations in behavior in these offspring as adults. In this chapter we describe how we came to construct the model we use today. Over the past 7 years the model has proved informative producing both structural brain changes (ventriculomegaly) and behavioral alterations (hyperlocomotion in response to NMDA antagonists) that are thought to be relevant to schizophrenia

    New Perspectives on Rodent Models of Advanced Paternal Age: Relevance to Autism

    Get PDF
    Offspring of older fathers have an increased risk of various adverse health outcomes, including autism and schizophrenia. With respect to biological mechanisms for this association, there are many more germline cell divisions in the life history of a sperm relative to that of an oocyte. This leads to more opportunities for copy error mutations in germ cells from older fathers. Evidence also suggests that epigenetic patterning in the sperm from older men is altered. Rodent models provide an experimental platform to examine the association between paternal age and brain development. Several rodent models of advanced paternal age (APA) have been published with relevance to intermediate phenotypes related to autism. All four published APA models vary in key features creating a lack of consistency with respect to behavioral phenotypes. A consideration of common phenotypes that emerge from these APA-related mouse models may be informative in the exploration of the molecular and neurobiological correlates of APA

    Cognitive performance and response inhibition in developmentally vitamin D (DVD)-deficient rats

    Get PDF
    Evidence from epidemiological studies suggest that low levels of vitamin D during early life alter brain development and may increase the risk of various adverse health outcomes, including schizophrenia. The aim of this experiment was to examine the effect of developmental vitamin D (DVD) deficiency on attentional processing using the 5-choice serial reaction time task (5C-SRT) and the 5-choice continuous performance test (5C-CPT), which specifically assesses sustained attention and vigilance in rodents. DVD-deficient and control rats were exposed to a series of target and non-target trials within each operant testing session. A number of measures were recorded including hit, miss, false alarm and correct rejection, as well as premature and perseverative responses. Performance on 5C-CPT was also assessed after administration of the atypical antipsychotic, clozapine. The adult offspring of DVD-deficient rats had higher levels of impulsivity, as demonstrated by a significant increase in premature responses. On the 5C-SRT and target trials of the 5C-CPT, accuracy was not significantly affected by prenatal diet; however DVD-deficient rats made 50% fewer correct rejections compared to controls on non-target trials of the 5C-CPT. Thus, control rats were able to discriminate between target and non-target trials, whereas DVD-deficient rats were unable to make this discrimination. Clozapine reduced the occurrence of false alarms in DVD-deficient rats to a level comparable to control values. Taken together these data suggest DVD-deficient rats have increased impulsivity as well as a lack of inhibitory control, and these features may be informative in terms of modeling the cognitive deficits observed in schizophrenia

    JULIDE: A Software Tool for 3D Reconstruction and Statistical Analysis of Autoradiographic Mouse Brain Sections

    Get PDF
    In this article we introduce JULIDE, a software toolkit developed to perform the 3D reconstruction, intensity normalization, volume standardization by 3D image registration and voxel-wise statistical analysis of autoradiographs of mouse brain sections. This software tool has been developed in the open-source ITK software framework and is freely available under a GPL license. The article presents the complete image processing chain from raw data acquisition to 3D statistical group analysis. Results of the group comparison in the context of a study on spatial learning are shown as an illustration of the data that can be obtained with this tool

    The neurodevelopmental hypothesis of schizophrenia: Convergent clues from epidemiology and neuropathology

    Get PDF
    The neurodevelopmental hypothesis of schizophrenia suggests that the disruption of early brain development increases the risk of later developing schizophrenia. This hypothesis focuses attention on critical periods of early brain development. From an epidemiologic perspective, various prenatal and perinatal risk factors have been linked to schizophrenia, including exposures related to infection, nutrition, and obstetric complications. From a genetic perspective, candidate genes have also been linked to altered brain development. In recent decades evidence from neuropathology has provided support for the neurodevelopmental hypothesis. Animal models involving early life exposures have been linked to changes in these same brain systems, providing convergent evidence for this long-standing hypothesis

    Vitamin D and the brain: key questions for future research

    Get PDF
    Over the last decade a convergent body of evidence has emerged from epidemiology, animal experiments and clinical trials which links low vitamin D status with a range of adverse neuropsychiatric outcomes. This research demonstrates that the timing of exposure to low vitamin D influences the nature of brain phenotypes, as exposures during gestation versus adulthood result in different phenotypes. With respect to early life exposures, there is robust evidence from rodent experiments indicating that transient developmental vitamin D (DVD) deficiency is associated with changes in brain structure, neurochemistry, gene and protein expression and behavior. In particular, DVD deficiency is associated with alterations in the dopaminergic neurotransmitter systems. In contrast, recently published animal experiments indicate that adult vitamin D (AVD) deficiency is associated with more subtle neurochemical and behavioral phenotypes. This paper explores key issues that need to be addressed in future research. There is a need to define the timing and duration of the ‘critical window’ during which low vitamin D status is associated with differential and adverse brain outcomes. We discuss the role for ‘two-hit hypotheses’, which propose that adult vitamin D deficiency leaves the brain more vulnerable to secondary adverse exposures, and thus may exacerbate disease progression. Finally, we explore the evidence implicating a role for vitamin D in rapid, non-genomic mechanisms that may involve L-type calcium channels and brain functio

    Adult vitamin D deficiency leads to behavioural and brain neurochemical alterations in C57BL/6J and BALB/c mice

    Get PDF
    Epidemiological evidence suggests that low levels of vitamin D may predispose people to develop depression and cognitive impairment. While rodent studies have demonstrated that prenatal vitamin D deficiency is associated with altered brain development, there is a lack of research examining adult vitamin D (AVD) deficiency. The aim of this study was to examine the impact of AVD deficiency on behaviour and brain function in the mouse. Ten-week old male C57BL/6J and BALB/c mice were fed a control or vitamin D deficient diet for 10 weeks prior to, and during behavioural testing. We assessed a broad range of behavioural domains, excitatory and inhibitory neurotransmission in brain tissue, and, in separate groups of mice, locomotor response to d-amphetamine and MK-801. Overall, AVD deficiency resulted in hyperlocomotion in a novel open field and reduced GAD65/67 levels in brain tissue. AVD-deficient BALB/c mice had altered behaviour on the elevated plus maze, altered responses to heat, sound and shock, and decreased levels of glutamate and glutamine, and increased levels of GABA and glycine. By contrast C57BL/6J mice had a more subtle phenotype with no further behavioural changes but significant elevations in serine, homovanillic acid and 5-hydroxyindoleacetic acid. Although the behavioural phenotype of AVD did not seem to model a specific disorder, the overall reduction in GAD65/67 levels associated with AVD deficiency may be relevant to a number of neuropsychiatric conditions. This is the first study to show an association between AVD deficiency and prominent changes in behaviour and brain neurochemistry in the mouse

    A morphology independent approach for identifying dividing adult neural stem cells in the mouse hippocampus

    Get PDF
    Background: Type 1 adult hippocampal neural stem cells (AH-NSCs) continue to generate neurons throughout life, albeit at a very low rate. The relative quiescence of this population of cells has led to many studies investigating factors that may increase their division. Current methods of identifying dividing AH-NSCs in vivo require the identification and tracing of radial processes back to nuclei within the subgranular zone. However, caveats to this approach include the time-intensive nature of identifying AH-NSCs with such a process, as well as the fact that this approach ignores the relatively more active population of horizontally oriented AH-NSCs that also reside in the subgranular zone. Results: Here we describe, and then verify using Hes5::GFP mice, that labeling for the cell cycle marker Ki67 and selection against the intermediate progenitor cell marker TBR2 (Ki67; TBR2 nuclei) is sufficient to identify dividing horizontally and radially oriented AH-NSCs in the adult mouse hippocampus. Conclusions: These findings provide a simple and accurate way to quantify dividing AH-NSCs in vivo using a morphology-independent approach that will facilitate studies into neurogenesis within the hippocampal stem cell niche of the adult brain. Developmental Dynamics 247:194–200, 2018

    Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice

    Get PDF
    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALE/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10 days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes
    corecore