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Abstract 

Background 

Type 1 adult hippocampal neural stem cells (AH-NSCs) continue to generate neurons 

throughout life, albeit at a very low rate. The relative quiescence of this population of 

cells has led to many studies investigating factors that may increase their division. 

Current methods of identifying dividing AH-NSCs in vivo require the identification 

and tracing of radial processes back to nuclei within the subgranular zone. However, 

caveats to this approach include the time-intensive nature of identifying AH-NSCs 

with such a process, as well as the fact that this approach ignores the relatively more 

active population of horizontally oriented AH-NSCs that also reside in the 

subgranular zone. 

 

Results 

Here, we describe, and then verify using Hes5::GFP mice, that labelling for the cell-

cycle marker Ki67, and selection against the intermediate progenitor cell marker 

TBR2 (Ki67+ve; TBR2–ve nuclei) is sufficient to identify dividing horizontally- and 

radially-orientated AH-NSCs in the adult mouse hippocampus.  

 

Conclusion 

These findings provide a simple and accurate way to quantify dividing AH-NSCs in 

vivo using a morphology independent approach that will facilitate studies into 

neurogenesis within the hippocampal stem cell niche of the adult brain.    

 

 



 
Introduction 

The continued generation of dentate granule neurons from AH-NSCs is important for 

multiple cognitive processes, including learning (Akers et al., 2014; Goncalves et al., 

2016) and mood regulation in mice (Yun et al., 2016). The level of adult hippocampal 

neurogenesis in humans is comparable to that in mice, suggesting that ongoing 

neurogenesis is functionally important for both species (Spalding et al., 2013; 

Bergmann et al., 2015; Ernst and Frisen, 2015). As a consequence of this, therapies 

are being developed that aim to specifically increase the levels of hippocampal 

neurogenesis to circumvent disorders such as depression, where neurogenesis is 

reduced (Harris et al., 2016b; Yun et al., 2016).  

 
There are three major cell types within the neurogenic lineage of the adult mouse 

hippocampus (reviewed in (Goncalves et al., 2016)). These are the AH-NSCs (Type 1 

cells), most of which are quiescent, the transient but highly proliferative intermediate 

progenitors (IPs or Type 2 cells), and finally neuroblasts (Type 3 cells). These cell 

types are defined by their relative division capacity, lineage potential, and expression 

of certain markers (von Bohlen und Halbach, 2011). Despite the intense interest in 

neurogenesis in the adult brain, one of the major challenges in the field is to clearly 

define these cellular populations, and particularly challenging in this respect is 

unequivocally identifying dividing AH-NSCs in vivo. The ability to accurately 

identify dividing AH-NSCs is crucial to determine the relative rates of quiescence or 

division among this population. A recent study using novel cell sorting protocol 

identified and purified to homogeneity almost the entire population of neurosphere-

forming precursors comprising both dividing and quiescent AH-NSCs (Jhaveri et al., 

2015), however this approach is not easily applied to the histological identification of 

these cells. In most studies, the histological criteria used to identify dividing AH-

NSCs in vivo involve linking a radial process, stained for Glial Fibrillary Acidic 

Protein (GFAP), Nestin, Brain Lipid-binding Protein (BLBP) or Epidermal Growth 

Factor Receptor (EGFR) expression, back to a nucleus within the subgranular zone 

(SGZ) and determining whether the nucleus is positive for a cell-cycle marker, such 

as Ki67 (von Bohlen und Halbach, 2011; Hussaini et al., 2013; Jhaveri et al., 2015). 

Despite the large number of studies to have utilised this approach, there are a number 

of inherent difficulties evident with this paradigm for identifying dividing AH-NSCs. 



 

Foremost among the problems associated with tracing a radial process is that the 

current approach ignores a population of horizontally oriented cells that are putative 

NSCs (Lugert et al., 2010). These putative horizontal NSCs (not to be confused with 

IPs, which are also horizontal dividing precursors) have different characteristics from 

their radial NSC counterparts. For example, horizontal AH-NSCs divide more 

frequently, and their numbers change more acutely in response to age or exercise 

(Lugert et al., 2010). This shortcoming implies that the many studies that have not 

analysed this cellular population may have underrepresented the number of dividing 

AH-NSCs present. While further work, such as lineage tracing, needs to be performed 

to confirm these horizontal cells as bona fide NSCs with the capacity to generate 

neurons and/or glia, an inclusive approach that accounts for the potential 

morphological heterogeneity of AH-NSCs should be developed. The second problem 

with the existing radial identification approach is that it is potentially inaccurate and 

extremely time-consuming.  Dividing AH-NSCs and intermediate progenitors (IPs) 

are frequently found together in clusters (Hodge et al., 2008), and therefore it 

becomes difficult to determine to which cell a radial AH-NSC process is linked. 

Finally, there is a lack of standardisation as to which radial markers are appropriate to 

use when identifying dividing AH-NSCs, demonstrated by the variety employed in 

the following studies (Gulbins et al., 2013; Li et al., 2013; Martynoga et al., 2013; 

Andersen et al., 2014; Kandasamy et al., 2014; Andreu et al., 2015; Nicola et al., 

2015; Yousef et al., 2015). Together, these issues pose great challenges to the 

interpretation and comparison of the many studies in this field. 

 

To address these issues, we developed a morphology independent approach for 

identifying dividing AH-NSCs. Our method is based solely on the exclusion of the IP 

marker TBR2 (Hodge et al., 2008; Hodge et al., 2012). We found that Ki67+ve; TBR2-

ve cells have large nuclei, express higher levels of SOX2 and are Hes5::GFP+ve. Most 

importantly, we verified in the notch reporter Hes5::GFP mouse strain (Jhaveri et al., 

2010; Lugert et al., 2010) that a subset of these cells also have a horizontal GFP+ve 

morphology, consistent with the description of horizontal NSCs by Lugert and 

colleagues (2010). The approach outlined here is accurate, fast and accounts for the 

heterogeneous morphology of AH-NSCs, representing a significant advance on 

previous approaches used to identify and quantify this population in vivo. 



Results 

 
Selecting a nuclear marker for dividing AH-NSCs 
 
To develop a morphology independent approach for identifying dividing AH-NSCs 

we first needed to identify a suitable nuclear protein to use as a marker. As no protein 

has been identified that alone specifically labels this population, we sought to identify 

a proxy marker, which could then be used in conjunction with other proteins to 

identify AH-NSCs. Two criteria were assessed; first, the percentage of dividing AH-

NSCs that are labelled by the nuclear protein (penetrance), and, secondly, the other 

cell types that express the protein (specificity).  

 

Two proteins satisfied these criteria and appeared to be reasonable candidates, namely 

Achaete-scute like 1 (ASCL1) and Ki67. The basic helix-loop-helix protein ASCL1 is 

a proneural factor required for AH-NSCs to enter the cell-cycle (Andersen et al., 

2014; Urban et al., 2016). Because ASCL1 protein is not expressed by quiescent AH-

NSCs and labels only a fraction of IPs (Kim et al., 2011), it displays good specificity. 

However, ASCL1 is not a completely penetrant marker, as it expressed by only by 

one-third of dividing AH-NSCs (Andersen et al., 2014). Moreover, ASCL1 also has 

functions in fate specification and differentiation in the embryonic nervous system 

(Castro et al., 2011; Guillemot and Hassan, 2016), and when ectopically expressed in 

the adult hippocampus, it leads to aberrant formation of oligodendrocytes (Braun et 

al., 2015). Therefore, in mouse models where fate specification is altered it may no 

longer serve as a reliable readout of AH-NSC division. 

 

In contrast, Ki67 appears to be a more suitable choice for a proxy marker of AH-NSC 

division. For example, Ki67 is expressed throughout the cell cycle and therefore 

should label all dividing AH-NSCs (high penetrance) (Gerdes et al. 1983; Endl and 

Gerdes 2000).  In the SGZ, it is expressed only by dividing AH-NSCs, dividing IPs 

and dividing neuroblasts and thereby also displays reasonable specificity (Scholzen 

and Gerdes, 2000). Moreover, because the function of Ki67 is restricted to chromatin 

organisation during cell division (Cuylen et al., 2016) it serves as a direct readout of 

division, which is unlikely to be altered in mouse models where fate specification is 

altered.  Consequently, we chose to investigate whether Ki67, in combination with 



other markers, could be used to specifically identify dividing AH-NSCs in the 

hippocampus.   

 

Negative selection against TBR2 is sufficient to exclude dividing IPCs and 
neuroblasts 
 

To distinguish between dividing nuclei (Ki67+ve) that are AH-NSCs, and those that 

are dividing IPs or neuroblasts, we co-stained 12-16 week-old C57BL/6J mice with 

Ki67, the IP marker TBR2 and the neuroblast marker DCX (Figure 1A, B). We 

hypothesised that the exclusion of TBR2+ve and DCX+ve cells would leave a 

population of Ki67+ve; TBR2-ve; DCX-ve cells within the SGZ that would comprise the 

dividing AH-NSC pool. To assess the plausibility of this experimental design, we first 

examined the percentage of IPs and neuroblasts that expressed Ki67. We focussed our 

analysis to the SGZ specifically (see Experimental Procedures). Consistent with 

previous reports we found that the majority of TBR2+ve cells were labelled with Ki67 

(83.1%, Figure 1C, D) (Hodge et al., 2008), while only 13.9% of DCX+ve cells were 

labelled with Ki67 (Figure 1E, F). At this stage we also made an important 

observation. All dividing DCX+ve neuroblasts had an immature IP-like morphology 

and expressed TBR2 (Figure 1F). Because all dividing neuroblasts also expressed 

TBR2, this led us to posit that selection against TBR2 alone should be sufficient to 

identify dividing AH-NSCs. 

 

Ki67+ve; TBR2–ve cells are dividing AH-NSCs  

To assess whether the dividing TBR2-ve cells were AH-NSCs we examined three 

parameters. First, we measured the relative expression of SOX2. In AH-NSCs the 

transcription factor SOX2 is down regulated as these cells differentiate, so that AH-

NSCs express relatively higher levels of SOX2 than IPs (Hodge et al., 2012; Shin et 

al., 2015). We stained adult mouse hippocampal sections for Ki67, TBR2 and SOX2. 

Supporting their identity as AH-NSCs, dividing TBR2-ve cells had a much higher 

expression of SOX2 than dividing TBR2+ve cells (Figure 2A, B; P < 0.001). 

Importantly, SOX2 expression may not be confined to AH-NSCs within the SGZ. To 

address this point, we co-labelled sections with SOX2 and S100ß, a marker for 

astrocytes, or with the oligodendrocyte marker OLIG2. Quantification of co-labelled 

cells located within the SGZ revealed that less than 10% of the SOX2+ve cells in the 



SGZ niche were S100ß-expressing cells of the astrocyte lineage, whereas less than 

3% of the SOX2+ve cells were immunopositive for OLIG2. As such, the majority of 

cells expressing high levels of SOX2 within the SGZ are likely to be AH-NSCs. 

Secondly, we measured nuclear size. Consistent with previous observations that NSCs 

are comparatively large (Rietze et al., 2001), the average area of the nucleus of 

dividing TBR2-ve cells was approximately two-fold larger than Ki67+ve; TBR2+ve cells 

(Figure 2A, C; P < 0.001). Finally, if dividing TBR2-ve cells are AH-NSCs then we 

would expect that some of these cells, except for those that were horizontally 

orientated or out of focal plane (Lugert et al., 2010), to have a radial GFAP+ve process. 

We investigated this by staining for Ki67, TBR2 and GFAP and observed that indeed 

many of the dividing TBR2-ve cells were clearly linked to a radial GFAP+ve process 

(Figure 2D, D’). Together these data suggest that a significant proportion of dividing 

TBR2-ve cells are AH-NSCs. 

 
Ki67+ve; TBR2–ve cells include horizontal AH-NSCs 

Are all dividing TBR2-ve cells in the SGZ AH-NSCs? Or does some fraction of these 

cells have another identity? For example, could some dividing, TBR2-ve cells be IPs 

that do not express TBR2? To address this, we stained Hes5::GFP mice with Ki67 and 

TBR2, predicting that if dividing TBR2-ve cells were AH-NSCs they should report 

high notch activity, which is indicated by GFP fluorescence in this line (Basak and 

Taylor, 2007; Lugert et al., 2010). Significantly, we found that all of the dividing, 

TBR2-ve cells analysed expressed GFP (24/24 cells) (Figure 3A-C). This finding was 

confirmed via the analysis of a second marker of proliferation, PCNA, in the 

Hes5::GFP line, in which all of the PCNA+ve; TBR2-ve cells expressed GFP (31/31 

cells; Supplementary Figure 1). The co-localisation of GFP with all of the dividing, 

TBR2-ve cells suggests that this population consists of AH-NSCs.  

 

The advantage of the nuclear-only stain described here is that it should enable the 

identification of dividing AH-NSCs regardless of their orientation. The findings of 

Lugert and colleagues (2010) revealed that up to two-thirds of dividing AH-NSCs, as 

defined by Hes5::GFP expression, are in a horizontal orientation, while only the 

remaining third were the classic radially-orientated AH-NSCs. To test whether the 

dividing TBR2-ve population included both horizontal and radial cells we stained for 

Ki67 and TBR2 in Hes5::GFP mice, and used the cytoplasmic GFP label to examine 



cellular morphology. We found that approximately half the dividing TBR2-ve cells 

exhibited a classical radial process (54%, 13/24 cells) (Figure 3A, D), while the 

remaining GFP+ve; TBR2-ve cells exhibited only a short horizontal process, fitting the 

description of horizontal AH-NSCs by Lugert and colleagues (2010) (46%, 11/24 

cells) (Figure 3B, D). Together these data demonstrate that dividing TBR2-ve cells, 

represent a population of AH-NSCs that includes cells with both radial and horizontal 

morphology.  

 

  



 
Discussion 

This study provides a morphology independent approach to identify dividing AH-

NSCs. The significance of this study, apart from it’s accuracy and simplicity, lies in 

the fact that the majority of quantification methods for AH-NSCs do not account for 

the putative population of horizontal AH-NSCs, as they do not possess a radially 

orientated fibre. While the true lineage potential and self-renewing capacity of 

horizontal AH-NSCs is yet to be established, they potentially account for at least half 

(this study) or two-thirds (Lugert et al., 2010; Jhaveri et al., 2015) of the dividing 

precursor pool in the dentate gyrus that express stem-cell specific markers and 

characteristics (e.g. SOX2high, Hes5::GFP+ve, TBR2–ve). Assuming these horizontal 

cells are bone fide NSCs, current methods would underestimate stem cell numbers, or 

misrepresent these horizontal cells as IPs. This is particularly important, as scenarios 

exist where the enhancement or inhibition of certain signalling pathways may have no 

effect on the relative activation of radial AH-NSCs but could affect the activation of 

horizontal cells. Current quantification methods would miss these effects. Indeed, 

there is evidence that subpopulations of AH-NSCs respond differently to signalling 

cues. For example, reporter strains such as the Hes5::GFP and nestin::GFP lines have 

previously been used in conjunction with the expression of EGFR to isolate 

homogeneous populations of neurosphere forming precursors in vitro which contain 

distinct subpopulations that are responsive to norepinephrine exposure or KCl-

depolarisation (Jhaveri et al., 2015).  

 

There are other advantages to the method described here. For example, because the 

protocol only uses nuclear-localised antigens, it can be used to quickly quantify 

dividing AH-NSCs either manually or in an automated manner using image analysis 

software. This is in stark contrast to the current method that requires users to trace a 

radial process back to the correct nucleus in the SGZ, which is both time-consuming 

and difficult to automate. Our approach is also likely to be more accurate. Dividing 

neural progenitors are often found in cellular clusters (Hodge et al., 2008), and it 

becomes difficult to trace a radial process back to the correct nucleus. Moreover, 

because our method relies only on the co-localisation of two nuclear antigens, a 

relatively low-resolution confocal image is sufficient for the correct identification of 

these cells. Lastly, our method requires only a dual antibody stain (Ki67 and TBR2). 



Combining this stain with other markers can provide additional information if 

required. For example, a triple-stain with GFAP would provide an estimate of the 

proportion of dividing AH-NSCs that are radial (GFAP+ve radial process) or 

horizontally orientated. Alternately, a triple stain with SOX2 could be used to also 

estimate the number of quiescent AH-NSCs (Ki67-ve; SOX2+ve; TBR2-ve). 

Importantly, there are caveats to this method. For example, although we confine our 

analysis to the SGZ of the dentate gyrus, we cannot rule out that Ki67+ve; TBR2-ve are 

not dividing oligodendrocyte precursors or microglia with only these two stains. That 

said, our analysis of SOX2 expression revealed that less than 3% of SOX2+ve cells 

within the SGZ co-expressed the oligodendrocyte marker OLIG2, suggesting that the 

vast majority of these cells are AH-NSCs.  Furthermore, triple labelling with cell-type 

specific markers can be used to quickly determine the percentage of Ki67+ve; TBR2-ve 

that are not AH-NSCs, and whether the proportion of these cells changes during 

different experimental conditions or during aging.  

 

Despite such caveats, the simple morphology independent approach to identify 

dividing AH-NSCs described in this study is an improvement over existing methods 

because it allows for the rapid and accurate quantification of dividing AH-NSCs. 

Critically, it is inclusive of horizontally-orientated cells that traditional quantifications 

methods ignore. While further work is needed to establish the true identity and fate 

potential of horizontally-orientated precursors in the dentate gyrus, our method will 

be pivotal to provide a comprehensive interpretation of changes to precursor cell 

numbers in studies that investigate the molecular control of neurogenesis. 



 

Experimental Procedures 

  

Animal ethics 

The work performed in this study conformed to The University of Queensland’s 

Animal Welfare Unit Guidelines for Animal Use in Research (AEC approval numbers 

QBI/353/13/NHMRC and QBI/355/13/NHMRC/BREED). All experiments were 

performed in accordance with the Australian Code of Practice for the Care and Use of 

Animals for Scientific Purposes, and were carried out in accordance with The 

University of Queensland Institutional Biosafety Committee.  

 

Animals   

Two mouse lines were used in this study, wild-type C57BL/6J mice, and Hes5::GFP 

mice (CD1 background) (Basak and Taylor, 2007; Lugert et al., 2010). These mice 

contain a 3 kilobase (kb) portion of Hes5 gene regulatory elements (1.6 kb upstream 

of the transcriptional start site, 1.4 kb downstream) controlling the expression of GFP. 

All mice in this study were analysed between 12-16 weeks of age. Both male and 

female mice were used.  

 

Primary antibodies 

The rabbit primary antibodies used in this study were anti-GFAP (Z033429-2, 1/1000, 

Dako), anti-TBR2 (ab23345, 1/800, Abcam) or monoclonal anti-TBR2 (EPR19012, 

1/200, Abcam); the mouse primary antibodies were anti-Ki67 (550609, 1/200, BD 

Pharmingen), mouse anti-PCNA (ab29, 1/100, Abcam) and mouse anti-GFAP (MAB 

360, 1/500, Millipore, MA); the rat primary was anti-Ki67 FITC clone SolA15 (11-

5698-80 1/400, San Diego, CA); the goat primary was anti-DCX (sc-8066, 1/200, 

Santa Cruz), and chicken primary was anti-GFP (ab13970, 1/500, Abcam). 

 

Tissue processing and immunofluorescence 

Animals were perfused transcardially with phosphate buffered saline (PBS) followed 

by 4% (w/v) paraformaldehyde in PBS. The dorsal skull of animals was removed and 

brains were post-fixed for 1-2 weeks. Coronal brain sections were cut with a 

Vibratome (Leica, Deerfield, IL) at a thickness of 50 µm.  

 



Prior to immunostaining, sections were mounted on Superfrost slides. Heat-mediated 

antigen retrieval was then performed in 10 mM sodium-citrate solution in PBS (pH 

6.0) at 95°C for 15 min. Exceptions to this protocol were Hes5::GFP sections, in 

which heat-mediated antigen retrieval was performed for only 2 min. This shorter 

retrieval was required so as to not irreversibly damage the GFP epitope (Nakamura et 

al., 2008). A standard immunofluorescence protocol was then performed as described 

previously (Harris et al., 2016a). 

 

Microscopy and image processing 

Confocal images were acquired as 1 µm optical sections spanning a 10 µm thick z-

stack on a Zeiss inverted Axio-Observer fitted with a W1 Yokogawa spinning disk 

module and Hamamatsu Flash4.0 sCMOS camera and Slidebook software (3i). Image 

channels were pseudocolored to allow for overlay, cropped, and minimum and 

maximum grey values were adjusted in ImageJ (freeware). Individual images were 

resized in Photoshop (Adobe), and image tiles were constructed as display items in 

Illustrator (Adobe). The quantification of immunopositive cells from these images 

was restricted the SGZ, which we defined as 2 cell widths above and below the 

innermost granule cell of the dentate gyrus. 

 

Fluorescence intensity quantification 

A single in focus plane was used to quantify SOX2 fluorescence. An outline was 

drawn around each cell nuclei using the DAPI channel and the area, mean grey value 

and integrated density were measured (ImageJ). The total corrected cellular 

fluorescence (TCCF) = integrated density – (area of selected cell * mean fluorescence 

of background readings) was then calculated (McCloy et al., 2014).  

 

Statistics  

Student’s t-tests were performed in Graphpad Prism (7.0) to compare the relative 

SOX2 fluorescence intensity (TCCF) and nuclei area of Ki67+ve TBR2-ve  and Ki67+ve 

TBR2+ve cells.  Data was obtained from at least 5 cells from each individual mouse (n 

= 3). Because we were interested in variability between cells within the SGZ niche, 

each individual cell was considered a biological replicate. This approach allows for a 

better measure of the biological variability per cell, rather than when averaging the 

values from multiple cells per mouse.  
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Figure legends 
 

Figure 1: Negative selection against TBR2 is sufficient to exclude dividing IPs 

and neuroblasts 

(A) Coronal section of an adult mouse brain at the level of the hippocampus stained 

for DAPI (white). (B) A schematic showing the dividing (Ki67+ve) cell types in the 

adult hippocampus. (C, E) The same coronal section as in (A) showing channels for 

(in C) TBR2 (blue), Ki67 (magenta) or (in E) TBR2, Ki67 and DCX (green).  Boxed 

regions in C and E are presented in C’ and E’ respectively. (D) The majority of 

TBR2+ve cells (arrows in C’) co-labelled with Ki67. Surprisingly, all dividing DCX+ve 

neuroblasts also expressed TBR2 (arrowheads in E’), as quantified in (F). Scale bar 

(in A): A, C, E = 168 µm; C’, E’ = 22.5 µm.  

 

Figure 2: Ki67+ve; TBR2-ve nuclei have AH-NSC characteristics 

(A-A”) Coronal section of an adult mouse brain at the level of the hippocampus, 

showing DAPI (white, A), SOX2 (green, A’) TBR2 (blue, A’’) and Ki67 (magenta, 

A’’) staining. The dashed lines demarcate the SGZ of the dentate gyrus. Ki67+ve; 

TBR2-ve cells (e.g. arrowhead in A) have higher SOX2 fluorescence (A’, B) and 

relatively larger nuclei (A-A”, C) than Ki67+ve; TBR2+ve cells (arrows in A-A”). (D, 

D’) Coronal section of an adult mouse hippocampus showing TBR2 (blue, D), GFAP 

(red, D and D’) and Ki67 (magenta, D’) staining. Many Ki67+ve; TBR2-ve cells 

(arrowhead) were linked to a radial GFAP+ve process (arrows). ***P < 0.001, t-test. 

Scale bar (in A): 9 µm.  

 

Figure 3: Ki67+ve; TBR2-ve nuclei include horizontally orientated Hes5::GFP AH-

NSCs 

(A-A”’, B-B”’) Coronal section of a mouse hippocampus, showing the dentate gyrus, 

with Hes5::GFP in (green), Ki67 (magenta) and TBR2 (red). (A-A”’) Some Ki67+ve; 

TBR2-ve nuclei (arrowhead) had a radial morphology (arrows), while others (B-B”’) 

had a horizontal morphology (arrowheads). (C) All Ki67+ve; TBR2–ve nuclei 

expressed GFP. (D) Radial and horizontal Ki67+ve; TBR2–ve nuclei were present in 

approximately equal numbers. Scale bar (in A): 17 µm. 
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