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Synopsis 

The neurodevelopmental hypothesis of schizophrenia suggests that the disruption of 

early brain development increases the risk of later developing schizophrenia. While 

lacking in precise details, this hypothesis focuses attention on critical periods of early 

brain development. From an epidemiological perspective, various pre- and peri-natal 

risk factors have been linked to schizophrenia – these include exposures related to 

infection, nutrition and obstetric complications. From a genetic perspective, 

candidate genes have also been linked to altered brain development. In recent 

decades evidence from neuropathology has provided support for the 

neurodevelopmental hypothesis. In particular, there is evidence implicating 

disruption of GABA-ergic interneurons in schizophrenia. Animal models involving 

early life exposures have been linked to changes in these same brain systems, 

providing convergent evidence for this long-standing hypothesis.  
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Introduction 

In the field of schizophrenia research, it is unusual to find a theory, like the 

neurodevelopmental hypothesis, that has grown stronger over two to three decades. 

This hypothesis, presented in its current formulation nearly a quarter of a century 

ago, proposes that genetic and/or environmental factors during critical early periods 

of brain development, adversely impact on adult mental health1, 2. Early formulations 

of this hypothesis proposed that after the developmental insult, the ‘lesion’ was 

clinically dormant (‘silent’) until after puberty, after which maturational events (or 

other environmental factors, such as cannabis use) were postulated to lead to the 

emergence of the characteristic psychotic features of schizophrenia. Whether such 

early exposures produce static (allostasis) or dynamic alterations in brain ontogeny 

remains an important research question3.  

The neurodevelopmental hypothesis provided a degree of coherence to a 

wide range of findings associated with schizophrenia. Several epidemiological clues 

had implicated early life exposures (e.g. season of birth, obstetric complications). 

People with schizophrenia have more minor physical anomalies, suggestive of 

prenatal disruptions4-6, as well as subtle changes in cognitive and psychological 

function in early childhood, predating the onset of schizophrenia7.   

In some respects, the initial formulation of the neurodevelopmental hypothesis 

was an unsatisfactory guide for research – it lacked a precise form that predicted a 

particular causal factor or even a particular category of risk factors (e.g., genetic 

versus nongenetic). Nevertheless, it did provide guidance as to the timing of the key 

events – it proposed that disruptive events during early brain development (e.g. pre- 
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or peri-natal period, or during the first few years of life), contribute to the risk 

architecture of schizophrenia. The use of the label ‘neurodevelopmental’ has led to 

some debate about static versus progressive encephalopathies3, 8, 9. This issue has 

come into sharper focus in recent years as the MRI evidence has accumulated 

indicating that schizophrenia is associated with changes in brain volume that predate 

the onset of the clinical syndrome and continue to change after onset10, 11. It is 

feasible that early disruption of brain development can alter the trajectory of both 

brain growth and involution across the lifespan. 

Clearly, genetic factors are also implicated in the neurodevelopmental 

hypothesis12 - major advances have occurred in this field in recent years. In 

particular, it is now clear that both common single nucleotide polymorphisms (SNPs) 

and rarer structural variants are associated with an unexpectedly wide range of 

neuropsychiatric disorders13. For example, a large study recently implicated MIR137, 

a short, noncoding RNA molecule known to regulated dendritic development and the 

maturation of neurons14. Many of these clues have been subsequently investigated 

in transgenic animal models. However, this topic will not be covered in this review. 

Here we will examine evidence for the neurodevelopmental hypothesis from two 

perspectives; (a) modifiable risk factors from the field of observational epidemiology, 

and (b) recent developments from neuropathology at the molecular and cellular 

levels. 

 

Modifiable risk factors for schizophrenia that impact during early life 

 

INSERT BOX 1 ABOUT HERE 
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Nutrition 

Catastrophic prenatal famine has been linked to an increased risk of 

schizophrenia.  Individuals who were in utero during the Dutch famine during World 

War II showed an increased risk of schizophrenia and schizophrenia spectrum 

personality disorders15. The finding has been replicated in studies based on a 

catastrophic famine in China during the Cultural Revolution16-18  

With respect to the association between risk of schizophrenia and specific 

maternal micronutrients, elevated homocysteine (a marker of impaired folate 

metabolism) from maternal third trimester sera has been linked to an increased risk 

of schizophrenia19. Based on clues from season of birth, low prenatal vitamin D has 

also been proposed as a risk factor for schizophrenia20. A recent case-control study 

lends weight to this candidate21.  There is now robust evidence from rodent models 

demonstrating that transient prenatal vitamin D deficiency results in persistent 

changes in adult brain structure, neurochemistry and behavior22-27. Maternal iron 

deficiency has also been linked to an increased risk of schizophrenia28. Even if 

altered prenatal nutrition contributes to only a small fraction of those with 

schizophrenia, the potential to use safe and cheap interventions in at-risk groups 

makes these candidate exposures attractive from a public health perspective29.  

 

Infection 

Evidence linking prenatal infection with an increased risk of schizophrenia has 

accumulated over recent decades30. The association was initially mostly based on 

ecological studies (e.g. examining the rate of schizophrenia in cohorts who were in 

utero during influenza epidemics31). More recent studies have been able to access 

biobanks in order to test these hypotheses in stronger, analytic settings. To date, 
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some evidence suggests that the risk of schizophrenia is elevated in those with 

prenatal exposure to influenza32, rubella33, or Toxoplasmosis gondii34, 35, with mixed 

evidence for herpes simplex virus type 2 (HSV2)36, 37.   Evidence from animal models 

suggests that the prenatal infection may impact on brain development via features of 

the maternal immune response rather than the direct impact of infectious agents 38.  

 

Pregnancy and birth complications 

Two meta-analyses have examined the association between pregnancy and 

birth complications and the risk of schizophrenia39, 40. Both have found that a diverse 

range of pregnancy and birth complications are associated with a significant but 

modest increased risk of later schizophrenia.   Based on prospective population-

based studies, Cannon and colleagues40 reported that the following specific 

exposures were associated with increased risk of schizophrenia; antepartum 

haemorrhage, gestational diabetes, rhesus incompatibility, preeclampsia, low birth 

weight, congenital malformations, reduced head circumference, uterine atony, 

asphyxia, and emergency caesarean section.  Animal models based on these 

exposure have been informative for schizophrenia research41, 42.  

 

Advanced paternal age 

The offspring of older fathers have an increased risk of a range of 

neurodevelopmental disorders, including schizophrenia43-45, autism46 and epilepsy47. 

The offspring of older fathers have slightly impaired neurocognitive development 

during early childhood48, 49.  With respect to schizophrenia, a meta-analysis50 

reported that the offspring of fathers aged 30 years or older had a significantly 

increased risk of schizophrenia compared to fathers aged 29 years or younger. The 
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greatest increased risk was found in fathers who were 50 years or older. These 

findings raise the possibility that an age-related accumulation of de novo mutations in 

paternal sperm contributes to the risk of schizophrenia.  A recent animal model 

based on advanced paternal age confirmed that the offspring of older male mice had 

a significantly increased risk of de novo copy number variants51. While paternal age 

may impact on health outcomes via genetic factors, this risk factor is potentially 

modifiable with public health education (much as has happened with the risks 

associated with advanced maternal age).  

 

Other risk factors that may impact on early brain development 

There is now robust evidence showing that migrant groups in some countries 

have an increased risk of schizophrenia52, 53. Meta-analysis of the primary studies 

shows that both first and second generation migrants have an increased risk of 

developing schizophrenia, and that the effect is most pronounced in dark-skinned 

migrants53.  Veling and colleagues54 have recently examined age-at-migration and 

risk of schizophrenia in first generation migrants. They found that migrants who 

arrive as babies or infants had the highest risk of schizophrenia, with risk decreasing 

with age at migration thereafter, such that those who migrated aged 29 years or 

older had no greater risk of psychotic disorder than the indigenous population. They 

conclude that the critical window of exposure is during early life.  

There is also evidence linking an increased risk of schizophrenia in those who 

are born and grow up in urban, more densely populated settings (e.g., in population-

based studies from Holland55 and Denmark 56). The evidence suggests that 

urbanicity of place of birth is a proxy marker for a yet-to-be-identified risk-modifying 

variable operating at or before birth57.  However, because most people who are born 
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in a city are also brought up there, it is difficult to disentangle pre- and perinatal 

effects from those operating later in childhood.   Early life stress has also been 

proposed as a risk factor for schizophrenia58, 59.  

While this review focuses on early life exposures, it should be noted that 

puberty is also a critical for brain development and maturation, and exposures during 

this period have also been linked to risk of schizophrenia. In particular, cannabis use 

during early teenage years increased the risk of psychotic-related outcomes60, 61. 

There is also evidence linking exposure to trauma and an increased risk of 

psychotic-related outcomes62-64.   

 

Neuropathological correlates of schizophrenia – clues related to the 

neurodevelopmental hypothesis  

 Findings from morphological and molecular postmortem studies support the 

hypothesis that schizophrenia is a consequence of a developmental process, and 

not a degenerative process, affecting the cellular connectivity and network plasticity 

of the cerebral cortex. Macroscopic morphological studies of postmortem tissue 

show a reduction in the normal brain asymmetry (or ‘torque’)65 in subjects with 

schizophrenia which, given that brain asymmetries are first apparent prenatally, is 

consistent with a neurodevelopmental disruption in brain development66.  The 

absence of prominent gliotic or other neurodegenerative changes in schizophrenia 

makes adult-onset brain insults unlikely (e.g. as would be expected from the 

neuropathology associated with adult-onset infection or autoimmune or other 

degenerative processes)67.  

At the cellular level, there is evidence to suggest that schizophrenia is 

associated with subtle abnormalities in cytoarchitecture of different brain regions; for 
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example, certain populations of cortical neurons are smaller and the density of white 

matter neurons just below the cortex is greater in schizophrenia68.   Recent studies 

have demonstrated that schizophrenia pathology is not only characterized by 

macroscopic or cytoarchitectural alterations, but also by molecular disturbances in 

circuits that are substantially remodelled during developmental periods critical for the 

cognitive functions that are impaired in schizophrenia. In fact, when examined at the 

level of individual types of neurons, molecular alterations in schizophrenia can be 

quite robust69. 

 

INSERT BOX 2 ABOUT 

 

Disturbances in certain cognitive processes, such as attention, context 

representation, and working memory, appear to form part of the core clinical 

landscape of schizophrenia1, 70. These cognitive deficits seem to correlate with 

abnormal activation of the dorsolateral prefrontal cortex (DLPFC) in patients with 

schizophrenia71-73. At the cellular level, working memory performance requires the 

precise timing and coordination of activity in subsets of pyramidal neurons in the 

DLPFC74. This “tuning” of pyramidal cells is accomplished by inhibitory inputs from 

gamma-aminobutyric acid (GABA) interneurons75, 76.  

Developmental refinements in the connectivity between GABA neurons and 

pyramidal cells are thought to provide the neural substrate for age-related 

improvement in working memory performance77-79. Recent findings suggest that 

working memory impairments in schizophrenia might reflect disturbances in the 

developmental trajectories of DLPFC synaptic circuitry80. Given the protracted nature 

of these circuitry refinements, a number of different environmental risk factors, acting 
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at different stages of development, could converge on a common pathology.   Such 

alterations, even if minor initially, could become progressively more detrimental as 

they lead to a diversion from the normal developmental trajectory.  In addition, 

inflection points in these trajectories may delineate periods of increased risk for 

specific components of cortical circuits.  

 

The ontogeny of cortical GABA interneurons  

Interneurons comprise a suite of neurons that display a diverse range of 

cellular mophologies, laminar distributions, patterns of connectivity and 

electrophysiologiocal properties. Within the cortex, interneurons contribute 

approximately 20% of the total neuronal complement. Cortical GABA-ergic 

interneurons are born in the ganglionic eminence, migrate tangentially into the 

cortical plate following well-defined pathways81-85, and then vertically into specific 

cortical layers86, 87. In recent years, much work has focused on defining the signalling 

systems that may influence the migration of these cells – these include such well-

known agents as Slit/Robo, Neuregulin/Erb4, semaphorin/neuropilin and BDNF and 

NT4 via TrkB receptors. Microarray experiments have also discovered specific genes 

that are differentially expressed in these cells during migration88.  Curiously, several 

of the genes expressed by these cells during migration are of broad interest to 

schizophrenia. These include ErbB489, Pcdhh8, Nr4a1 (also known as Nur77), Rora, 

and several genes involved in calcium channels.   

Inhibitory GABA neurons in the cerebral cortex can be categorized into 

different neuronal subtypes defined by the presence of specific molecular, 

electrophysiological, and/or anatomical properties. Cell type/input- and lamina-

specific alterations of pre- and postsynaptic markers of specific circuits formed by 
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certain of these cell types have been found in the DLPFC of subjects with 

schizophrenia. Early post-mortem studies in patients with schizophrenia revealed an 

apparent reduction in inhibitory GABA neurons. These findings were largely in the 

cortex with the most robust changes seen in the calcium-binding protein parvalbumin 

(PV) containing neurons. However, it was never certain whether such reductions 

indicated a loss of cells or a down-regulation of the PV marker protein90.  In 

particular, widely replicated findings of a reduced expression of GAD67, an enzyme 

required for the synthesis of GABA at inhibitory synapses, and GAT-1, the protein 

responsible for the reuptake of GABA at the presynaptic site, suggest alterations in 

both the synthesis and reuptake of GABA in a subset of DLPFC inhibitory 

interneurons in schizophrenia91-93. The affected GABA neurons include those that 

contain PV, and the postsynaptic GABAA receptors that receive inputs from PV 

neurons are also altered in schizophrenia69. Interestingly, both PV neurons and their 

postsynaptic GABAA receptors have a protracted period of development94, providing 

a broad window during which environmental events could disrupt their 

developmental trajectories.    

It is the complex nature of interneuron development, migration, maturation 

and synapse formation that makes these interneuons of specific interest to the field 

of schizophrenia research. Research is now focussing on understanding how 

changes to the trajectory of interneuron specification, migration and/or maturation 

might contribute to the etiopathogenesis of schizophrenia. 

 

 

INSERT BOX 3 ABOUT HERE 
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Integrating epidemiology and neuropathology – what can we learn from animal 

models?  

Several of the animal models related to schizophrenia have shown 

abnormalitiies in GABA-ergic interneurons. Post-natal exposure to various 

psychopharmacological probes have been associated with altered GAD67 and/or PV 

expression in regions of interest. Agents used include: MK-80195,amphetamine 96, 

phencyclidine (PCP)95 and picrotoxin  (a non-competitive antagonist of the GABA-A 

receptor)97.  

Altered GAD67 and/or PV expression has also been noted in transgenic 

animals of interest to schizophrenia research, including the heterozygous Reeler 

mouse98 and DISC1 mutant mice99. An interesting recent approach has been to 

selectively target the function of these GABA-ergic interneurons directly. In one study 

when the expression of the NR1 subunit of the NMDA receptor was reduced 

selectively within inhibitory GABA neurons in mice, this appeared to confer a 

schizophrenia-like phenotype100. Impaired GABAergic function in schizophrenia 

could also be secondary to alterations in the striatal DA system. For example, 

Kellendonk and colleagues who developed a model in which increased striatal 

dopamine signalling has been linked with diminished prefrontal cortical inhibition, 

presumably due to diminished GABA function101. 

Meyer and Feldon have recently published a comprehensive assessment of 

epidemiologically-informed animal models related to schizophrenia102. To date, 

animal models have tried to emulate a range of exposures related to the 

neurodevelopmental hypothesis. These included obstetric complications103, 104, 

immune activation105-107, low maternal vitamin D23, 108, advanced paternal age51, 109, 

110, and early life stress111, 112.  These models express surprisingly high face and 
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predictive validity for schizophrenia. For example, maternal immune activation with 

the viral mimic Poly-IC leads to a reduction in both Reelin and PV positive 

interneurons and GABA content in the prefrontal cortex of adult offspring113, 114. 

Similarly, when pregnant rats were exposed to the bacterial membrane component 

lipopolysaccharide (LPS) a reduction in both reelin and GAD67 interneurons in the 

hippocampus of their offspring was revealed115. Finally in models of post-adolescent 

stress, such as social isolation, similar reductions in hippocampal or prefrontal 

cortical GABAergic neuron structure or content have been found116, 117. In summary, 

there is evidence from animal models to suggest that disruption to GABA 

interneurons is a shared phenotype associated with diverse genetic and 

environmental stressors. As such, the orderly development of these cells may be a 

marker of early brain disruption.  

 

Conclusions 

We have previously argued that it is critical that schizophrenia epidemiology is 

firmly anchored to a neurobiologically-informed framework118.  While clinical research 

is clearly important, animal models can play a key role in unravelling the biological 

mechanisms linking early life disruptions to later neuropsychiatric disorders. 

Moreover, animal models provide an experimental platform that allows researchers 

to focus on more substrate-pure neurobiological correlates of clinical syndromes119.  

Research inspired by the epidemiological clues such as prenatal nutrition and 

prenatal infection is likely to lead to the identification of informative pathways.  

However, on its own, epidemiology will never be able to address the biocomplexity 

underpinning a poorly understood group of disorders like schizophrenia.  The best 

returns will come from linking schizophrenia epidemiology with molecular, cellular 
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and behavioural neuroscience. Cross-disciplinary projects related to candidate 

genetic or nongenetic risk factors can address the biological plausibility of these 

factors, and can also provide a road to new discoveries in neuroscience. We need to 

build shared discovery platforms that encourage greater cross-fertilization between 

schizophrenia epidemiology and basic neuroscience research. We are confident that 

the neurodevelopmental hypothesis will continue to inspire research in both 

epidemiology, and neuroscience, and that this journey will continue to provide clues 

to the neurobiological correlates of schizophrenia.  
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BOX 1 

Clues from Epidemiology that implicate the neurodevelopmental hypothesis 

Excess risk of schizophrenia associated with exposures and proxy markers that 

could impact on early brain development;  

 Winter-spring birth 

 Born and/or raised in urban areas 

 Prenatal infection 

 Prenatal famine 

 Prenatal micronutrient deficiency (e.g. vitamin D, iron, folate) 

 Pregnancy and birth complications 

 Early life motor and cognitive antecedents in cohort studies 

 Increased prevalence of minor physical anomalies  
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BOX 2 

Clues from neuropathology that implicate the neurodevelopmental hypothesis 

Schizophrenia is associated with findings suggestive of altered early brain 

development;  

 Loss of normal cerebral asymmetry 

 Lack of prominent gliosis or related markers of adult-onset 

neuropathology 

 Subtle alterations in cytoarchitecture.   

a. smaller neurons  

b. shorter dendrites  

c. increased density of neurons in the subcortical white matter.  

 Altered expression of markers of genes/proteins implicated in brain 

development 
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BOX 3 

Cortical GABA neurons in schizophrenia   

 Multiple markers of GABA inhibitory neurons are altered but the 

number of neurons in the cerebral cortex does not appear to be reduced.  

 A subset of GABA neurons exhibit decreased GABA synthesis and 

uptake; these changes are best characterized in the parvalbumin-containing 

subset. 

 Postsynaptic GABA receptors are also altered; these changes appear 

to be specific for different subunits and thus types of GABAA receptors. 

 Lower expression levels of the gene for GAD67, which is responsible 

for most GABA synthesis, are found in multiple cortical regions.  
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