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Abstract 

Epidemiological evidence suggests that low levels of vitamin D may predispose 

people to develop depression and cognitive impairment. While rodent studies have 

demonstrated that prenatal vitamin D deficiency is associated with altered brain 

development, there is a lack of research examining adult vitamin D (AVD) deficiency. 

The aim of this study was to examine the impact of AVD deficiency on behaviour and 

brain function in the mouse. Ten-week old male C57BL/6J and BALB/c mice were 

fed a control or vitamin D deficient diet for 10 weeks prior to, and during behavioural 

testing.  We assessed a broad range of behavioural domains, excitatory and 

inhibitory neurotransmission in brain tissue, and, in separate groups of mice, 

locomotor response to D-amphetamine and MK-801. Overall, AVD deficiency 

resulted in hyperlocomotion in a novel open field and reduced GAD65/67 levels in 

brain tissue. AVD-deficient BALB/c mice had altered behaviour on the elevated plus 

maze, altered responses to heat, sound and shock, and decreased levels of 

glutamate and glutamine, and increased levels of GABA and glycine. By contrast 

C57BL/6 mice had a more subtle phenotype with no further behavioural changes but 

significant elevations in serine, homovanillic acid and 5-hydroxyindoleacetic acid. 

Although the behavioural phenotype of AVD did not seem to model a specific 

disorder, the overall reduction in GAD65/67 levels associated with AVD deficiency 

may be relevant to a number of neuropsychiatric conditions. This is the first study to 

show an association between AVD deficiency and prominent changes in behaviour 

and brain neurochemistry in the mouse. 
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1. Introduction 

The role of vitamin D in adult brain function has attracted considerable attention in 

recent years [1]. Apart from the well-established role in calcium homeostasis, key 

features of the vitamin D system have been identified in the central nervous system. 

For example, the vitamin D receptor and the key enzyme required for its activation, 

25-OH D3 1α hydroxylase,  has been identified in both neuronal and glial cells in the 

human brain [2]. Vitamin D has been linked to key neurotrophic agents, such as 

nerve growth factor and glial cell-derived neurotrophic factor [3,4], and animal 

experiments have suggested that the active form of the vitamin has ‘neuroprotective’ 

features. For example, pre-treatment with vitamin D attenuates the effects of various 

stressors, including 6-hydroxydopamine-induced neurotoxicity [5,6]. Moreover, 

vitamin D deficiency in adult rats has been shown to exacerbate stroke injuries and 

lead to more severe post-stroke behavioural impairments and this was accompanied 

by lower levels of the neuroprotective hormone, insulin-like growth factor 1 [7]. 

Clues from epidemiology suggest that developmental vitamin D (DVD) deficiency 

may be associated with an increased risk of schizophrenia [8] and there has been 

considerable focus on animal models that examine the impact of DVD deficiency on 

brain related outcomes [9-11]. For example, rats exposed to DVD deficiency have 

decreased expression of nerve growth factor [4]. They also have ventricular 

enlargement as neonates [9] a finding that persists through to adulthood [4]. DVD 
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neonates have alterations in catechol-O-methyl transferase expression and 

dopamine metabolism [12] and early alterations in dopamine ontogeny [13]. Links 

between dopamine and vitamin D have also been identified in adult animals. Vitamin 

D has been shown to promote the synthesis of tyrosine hydroxylase, the rate-limiting 

enzyme of dopamine synthesis and also to increase basal levels of dopamine within 

the central nervous system after localised injection of vitamin D3 [6,14].   

The research community has become more aware of the role of vitamin D in adult 

brain function and epidemiological studies have examined links with various 

neuropsychiatric disorders. For example, cross-sectional studies have reported 

significant associations between low concentrations of 25-OH D3 in adults and 

various indicators of cognitive function, including memory and orientation [15-17], 

executive function [18,19], and diagnosis of dementia and Alzheimer’s disease [20]. 

A recent prospective study [21] found that baseline vitamin D deficiency was 

associated with greater impairment of cognitive tasks in subsequent years. However, 

other studies have not found an association between vitamin D status and brain 

outcomes [22-24].  

Studies on European populations have shown that second generation dark-skinned 

migrants (with a reduced ability to generate vitamin D from sunlight) have an 

increased risk of being diagnosed with schizophrenia compared to other immigrants 

and an even greater risk compared to the native born [25]. Vitamin D deficiency has 

been linked to a number of other neurological disorders including autism [26], 

seasonal affective disorder [27,28], and multiple sclerosis [29]. Cross-sectional 

studies have reported an association between vitamin D status and depressive 

symptoms [30]. A prospective study reported that women with low levels of vitamin D 

at baseline reported higher levels of depressive symptoms 3 and 6 years later [31]. 
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To date, there has only been one study to investigate the impact of AVD deficiency 

on brain function and behaviour in rodents [32]. However, in that study the Sprague-

Dawley rats were fed a vitamin D deficient diet from weaning and they had reduced 

body weight compared to controls, which suggests that musculoskeletal problems 

may have confounded interpretation of behavioural outcomes in the study. AVD 

deficiency has previously been associated with altered catecholamine metabolism in 

the cortex of Sprague-Dawley rats, with alterations in the levels of noradrenaline and 

dihydroxyphenylacetic acid, a breakdown product of dopamine [33]. However, there 

was no behavioural data reported. Thus, to our knowledge there are no published 

data on the impact of AVD deficiency on mouse behaviour or brain function and thus 

it is difficult to predict how this may impact on different behavioural domains or brain 

neurochemistry in mice.  

The aim of this study was to establish a model of AVD deficiency in two strains of 

mice and to examine a broad range of behavioural tests and selected neurochemical 

outcomes within the brain. BALB/c and C57BL/6J strains were chosen for this study 

because they are inbred strains that are commonly used in biomedical research, and 

show markedly different behavioural phenotypes [34]. The overarching aim of this 

work was to establish a model of adult vitamin D deficiency, rather than model a 

single neuropsychiatric disorder. Indeed, a recent review highlighted the fact that 

vitamin D deficiency is associated with a range of neuropsychiatric outcomes [11]. 

As such we used a multi-tiered behavioural test battery to broadly assess the 

behavioural domains of locomotion, exploration, anxiety, social behaviour, learned 

helplessness, sensorimotor gating, associative learning, and nociception, as well as 

responses to the psychomimetic agents D-amphetamine and MK-801. These 

behavioural tasks are relevant to a number of neuropsychiatric disorders including 
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pyschosis, schizophrenia, anxiety and depression. Neurochemical profiles were 

analysed in drug-naïve mice in order to explore the effect of AVD deficiency on 

levels of catecholamines and amino acids, as well as selected enzymes involved 

with key neurotransmitters.  

2. Materials and Methods 

2.1 Animals and housing 

A total of 148 male mice were used in this study (79 x C57BL/6J and 69 x BALB/c). 

Ten week old C57BL/6J and BALB/c mice (Animal Resources Centre, Canning Vale, 

WA, Australia) were obtained and housed in groups of 4 in individually ventilated 

cages (Techniplast, VA, Italy), with corn cob bedding (Shepherd Specialty Papers, 

Inc., TN, USA) at the Eskitis Animal House Facility, Griffith University. The mice were 

assigned to either a control diet (Standard AIN93G Rodent diet with 1,000 IU vitamin 

D3/kg, Specialty Feeds, WA, Australia) or a vitamin D-deficient diet (Vitamin D3 

Deficient AIN93G Rodent diet, Specialty Feeds, WA, Australia) for a minimum of 10 

weeks prior to the start of behavioural testing; and for the entire duration of the 

experimental procedures. The mice were maintained on a 12-hour light-dark cycle 

(lights on at 07:00 h) with ad libitum access to food and water. They were housed 

under incandescent lighting free from UVB radiation. All experimental work was 

performed with approval from the Griffith University Animal Ethics Committee, under 

the guidelines of the National Health and Medical Research Council of Australia. 

2.2 Procedure 

Behavioural phenotyping began when the on postnatal day 140 (P140). Mice were 

exposed to a variety of tests assessing various behavioural domains. The tests were 
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performed on separate days and in the following order (approximate age of mice at 

each test); open field (P140), elevated plus maze (P168), holeboard (P169), 

light/dark test (P170), forced swim test (P171),  prepulse inhibition of the acoustic 

startle response (P175), active avoidance (P182), social interaction (P189), hot plate 

test (P196). Sixteen C57BL/6J mice (n = 8/diet) and sixteen BALB/c mice (n = 8/diet) 

were subjected to the behavioural test battery, with additional mice from each strain 

tested in the novel open field (n = 28/diet/strain), ASR, and PPI of ASR (n = 

20/diet/strain). Behaviours were recorded by two methods, either by video recording 

software (Miglia TV, Hertfordshire, UK) or a USB webcam and recording software 

(Media Player) and analysed by computer tracking software (Ethovision, Noldus, 

Wageningen, The Netherlands). All apparatus was cleaned before and after each 

mouse with 80% ethanol. 

2.2.1 Open Field 

The open field test was used to measure baseline locomotion [35]. The open field 

apparatus was an opaque box (28 cm high x 30 cm x 30 cm), in which the mice were 

placed in the centre of the arena. The test lasted for 30 min, during which time both 

total distance travelled and distance travelled over time were analysed to assess 

locomotion. Locomotion was assessed in a novel environment, and also in a familiar 

environment, with a subset of mice (n=9-10 per group) re-exposed to the same open 

field arena 7 weeks later. 

2.2.2 Elevated plus maze 

The elevated plus maze was used to measure anxiety-related behaviour [36]. The 

elevated plus maze was made of opaque grey acrylic, and was attached to a stand, 

raising it 50 cm off the ground. It was comprised of four arms (each 5 cm x 30 cm) 
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radiating out from a centre platform (5 cm x 5 cm) in the shape of a plus. Two 

opposing arms had sides (closed arms) and the other two did not (open arms). Mice 

were placed on the centre platform, facing out towards one of the open arms, with 

the test lasting for 10 min. The main parameter tested was the time spent on the 

open arms compared to the time spent on the closed arms. The total distance 

travelled in the 10 min test was also analysed. 

2.2.3 Holeboard Test 

The holeboard test was used to measure exploration based on the frequency of 

head-dipping into small holes situated in the floor of an open field [37]. A white 

acrylic base containing four evenly spaced holes (2.5 cm diameter), was added to 

the bottom of a black box (30 cm high x 30 cm x 30 cm) to create the holeboard. The 

mice were initially placed along the edge of the wall and the number of head-dips in 

a 10 min period was analysed, along with the total distance travelled. 

2.2.4 Light/dark test 

The light/dark test was used in the behavioural test battery to aid in the analysis of 

anxiety levels of the mice [38]. The two-chambered light/dark apparatus consisted of 

an open black box (30 cm high x 30 cm x 30 cm), with half of the box containing a 

black insert (15 cm high x 30 cm x 15 cm) creating the dark chamber. The insert had 

a small rounded open doorway in the centre leading to the light chamber. The mice 

were placed in the doorway with their head inside the dark chamber and two main 

parameters were analysed. The time for the mouse to emerge from the dark chamber 

into the light and the percentage of time the mouse spent in the light chamber in a 10 

min period. 
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2.2.5 Forced swim test 

The forced swim test was used to measure learned helplessness [39]. The apparatus 

used in the forced swim test was a clear round container (20 cm high x 13 cm 

diameter) with a column of water (16 cm deep) maintained at 25 °C, from which the 

mouse could not escape. The percentage of time the mouse spent immobile in each 

one min time bin, over a 10 min period was the parameter analysed.  

2.2.6 Prepulse inhibition of the acoustic startle response 

PPI of the ASR was used to measure sensorimotor gating [40] using startle 

chambers (SR-Lab, San Diego Instruments, CA, USA), which consisted of a 

Plexiglass cylinder (5 cm diameter x 12 cm long) mounted on an elevated Plexiglass 

base within a dark chamber. A speaker situated 24 cm above the cylinder was used 

to provide background noise within the chamber set to 70 dB as well as the acoustic 

pulses of white noise throughout the testing. 

Testing began with an acclimatisation period of 300 s of 70 dB background noise. 

The mice then underwent a total of 130 trials (26 different blocks of 5 trials). To 

assess within-trial habituation, startling pulses of 110 dB were presented at the start 

(post acclimatisation), middle and end of the testing. The mice were exposed to a 

range of pulse intensities (80, 90, 100, 110 and 120 dB) to measure ASR and a 

range of prepulse to pulse intervals (8, 16, 32, 64, 128 and 256 ms) before a 120 dB 

pulse to measure PPI. The median values for each block of 5 trials were used for 

analysis, with PPI being calculated with the formula: %PPI = [(startle amplitude of 

ASR trial - startle amplitude on prepulse trial)/startle amplitude of ASR trial] x 100. 

2.2.7 Active avoidance 
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The active avoidance test was used to measure associative learning, using a 

conditioned avoidance response [41]. The active avoidance chambers (Gemini, CA, 

USA) consisted of two compartments (18 cm high x 26 cm x 21 cm) separated by a 

guillotine door (10 cm high x 7 cm) above a barrier. Testing began with a 300 s 

acclimatisation period followed by 80 trials. Each trial was comprised of a 4 s 

conditioned stimulus, followed by a 16 s unconditioned stimulus. The conditioned 

stimulus consisted of a tone, cue light and the opening of the door and the 

unconditioned stimulus consisted of a 0.4 mA shock delivered to the floor. The door 

between the chambers remained open during the trial until the mouse moved 

through it to the other compartment. Each trial was separated by a 20 s inter-trial 

interval with no stimulus, with the door between compartments closed.  

Active avoidance for each mouse was analysed over 3 consecutive days. The first 

two days followed the above method for acquisition and retention; with the third day, 

a test of extinction, in which the unconditioned stimulus was removed. Each trial still 

began with the 4 s conditioned stimulus, but was followed by 16 s with no stimulus, 

in order to test the mouse’s ability to learn a new response to the original conditioned 

stimulus. 

2.2.8 Social interaction test 

The social interaction test was used to measure the behavioural responses of two 

unfamiliar, diet and weight matched mice to each other [42]. The test was conducted 

in an open field arena and behaviours were analysed over a 10 min period. A variety 

of behaviours were assessed including sniffing, self-grooming, allo-grooming, 

following and rearing. 

2.2.9 Hot plate test 
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The hot plate test was used to measure a response to noxious stimuli [43]. The hot 

plate (Harvard Apparatus, Ltd., Kent, England) was maintained at 53 °C, with the 

mice contained on the hot plate within a clear Perspex cylinder (27 cm high x 20 cm 

diameter). The test consisted of three trials, of a maximum length of 30 s. The 

parameter measured was the latency to lick hind paw or to jump with both feet, in an 

attempt to escape. The mouse was removed immediately after this was achieved. If 

this was not achieved by the end of the 30 s, the mouse was removed and the trial 

ended. The inter-trial period was 60 s. 

2.3 Brain Neurochemistry 

2.3.1 Tissue Collection 

Body weight was monitored on a fortnightly basis throughout the study for all mice. 

At the time on euthanasia, body measurements were taken from both strains of 

mice, for body length (from tip to snout to base of tail) and tail (from base to tip). 

Brains were collected from drug-naïve mice subjected to the behavioural test battery. 

Mice were euthanized by carbon dioxide followed by decapitation. The whole brain 

was removed and weighed. Using free-hand dissection, each brain was sectioned 

into left and right cerebrum and hindbrain, with olfactory bulbs removed. Tissue was 

frozen on dry ice and stored at -80 C until further processing. 

2.3.2 High performance liquid chromatography and analysis 

Catecholamines and amino acids from brain tissue were measured by high 

performance liquid chromatography with electrochemical and fluorescent detection 

using a standard protocol. Data was stored and processed with ChemStation 

software (B1.03.02, Agilent Technologies, Inc., CA, USA). Data was quantified by 
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calculating peak-area ratios of each compound compared to deoxyepinephrine 

(catecholamine internal standard) or homoserine (amino acid internal standard) and 

corrected for dilution. Identity of each compound was determined by retention time 

and the final amount was expressed as nanogram per gram (ng/g) wet tissue. 

2.3.3 Protein analysis 

Brain tissue was analysed for protein content using western analysis. Total protein 

was collected by sonication in 20 mM Hepes, 1 mM EDTA lysis buffer (pH 7.4) 

containing 1% Triton and 1X Protease Inhibitor cocktail (Sigma). Following 

centrifugation, protein concentrations in the supernatant were determined using a 

BCA protein assay (Pierce, Rockford, IL, USA). Between 15 and 30 g of protein 

was loaded for all samples dependent on protein to be analysed. Proteins were 

separated by standard polyacrylamide gel electrophoresis techniques on 4-12% Bis-

Tris SDS-PAGE gels. Separated proteins were transferred to Immobilon-FL 

membranes (Millipore, Bedford, MA, USA) at 0.4 A for 2 h at room temperature. 

Membranes were blocked in Lycor Odyssey Blocking buffer (Millenium Science, VIC, 

Australia) for 1 h and incubated with primary antibodies for 1 h at room temperature 

or overnight at 4 C in Lycor Odyssey blocking buffer. The primary antibody dilutions 

were as follows: catechol-O-methyl transferase, monoclonal mouse anti-mouse 

antibody (BD Biosciences, San Jose, CA, USA) 1:2000; monoamine oxidase A, 

polyclonal rabbit anti-human antibody (Santa Cruz Biotechnology, Santa Cruz, CA, 

USA) 1:2000; glutamine synthetase, polyclonal rabbit anti-human antibody (Abcam, 

Cambridge, UK) 1:12,000; GAD 65/67, polyclonal rabbit anti-human antibody 

(Sigma-Aldrich, St Louis, MO, USA) 1:150,000; and the normalising gene 



13 
 

glyceraldehyde-3-phosphate dehydrogenase, monoclonal mouse anti-rabbit antibody 

(Millipore, Bedford, MA, USA) 1:100,000). 

The membranes were then washed in phosphate buffered saline with 1% Tween 20 

for 3x 10 min and exposed to secondary antibodies conjugated with IRDyes for 1 h 

at room temperature. The IRDye 800CW-polyclonal goat anti-rabbit antibody 

(Millenium Science, VIC, Australia) was diluted 1:15,000 for binding to monoamine 

oxidase A antibodies and 1:30,000 for binding to GAD65/67 antibodies. The IRDye 

680-polyclonal goat anti-mouse antibody (Millenium Science, VIC, Australia) was 

diluted 1:20,000. The membranes were again washed in phosphate buffered saline 

with 1% Tween 20 for 3x 10 min and the protein bands visualized on a Licor 

Odyssey CLx scanner. Amount of proteins were normalised against glyceraldehyde-

3-phosphate dehydrogenase. 

2.4 Behavioural Pharmacology 

The open field arena was used to assess behaviour in response to two 

psychomimetic drugs in separate groups of mice. Mice were habituated to the open 

field for 30 min before receiving an intra-peritoneal injection of a 4 ml/kg 0.9 % saline 

solution. They were placed back in the open field for a further 30 min following this 

injection (Data not shown). They then received an intra-peritoneal injection of a 4 

ml/kg solution of either D-amphetamine (control n=9, AVD n=10) or MK-801 (control 

n=8, AVD n=8). They were placed back in the open field and their behaviour was 

recorded for up to 210 min. 

2.4.1 Psychomimetic Drugs 

D-amphetamine (Sigma, MO, USA) was diluted to a concentration of 1.25 mg/ml in 
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0.9 % saline solution and aliquots were stored at -20 °C. Mice were given an 

injection dose of 5 mg/kg. MK-801 (Sigma, MO, USA) was diluted to a concentration 

of 0.125 mg/ml in 0.9 % saline solution and aliquots were stored at -20 °C. Mice 

were given an injection dose of 0.5 mg/kg. The drug dosage used was based on 

previous studies showing a high locomotor response with little stereotypic or ataxic 

behaviours [44,45]. 

2.5 Blood chemistry 

At the completion of experimental procedures, a terminal blood sample was taken 

from each mouse via cardiac puncture. The levels of 25-OH D3 was measured in 

serum samples using liquid chromatography-tandem mass spectrometry (Sciex 

Instruments, ON, Canada) on a 4000 QTrap API AB mass spectrometer [46]. BALB/c 

control: 32.0 ± 1.7 nM, AVD-deficient: 2.9 ± 0.2 nM, and C57BL/6J control: 65.3± 2.3 

nM, AVD-deficient: 2.9 ± 0.1 nM. 

Calcium levels (n=17-19) were measured in serum samples using the QuantiChrom 

Assay Kit using quantitative colormetric determination (BioAssay Systems, CA, USA) 

and were not significantly different between groups. BALB/c control: 2.33 ± 0.15 mM, 

AVD-deficient: 2.20 ± 0.09 mM, C57BL/6J control: 2.28 ± 0.09 mM, AVD-deficient: 

2.13 ± 0.10 mM).  

2.6 Statistical analysis 

Results were analysed for statistical significance using SPSS (version 17.0) 

software. All data were analysed for the main effects of Diet (control or AVD-

deficient) and Strain (C57BL/6J or BALB/c) using analysis of variance (ANOVA) or, 

where appropriate, repeated measures ANOVA. Mann-whitney U test was used to 
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analyse non-parametric data. Significant differences (p<0.05) were followed up with 

post-hoc t-tests. 

3. Results 

3.1.1 Open Field 

The locomotor response was measured both in a novel environment and in a familiar 

environment. Overall, AVD-deficient mice from both strains exhibited increased 

locomotion compared to the controls in a novel environment (F1,108 = 11.18, p = 

0.001) (Fig.1a and b). There was a significant effect of Diet in both BALB/c (F1,54 = 

4.13, p = 0.047) and C57BL/6J mice (F1,54 = 9.11, p = 0.004). Repeated measures 

ANOVA indicated that mice were significantly less active when subsequently tested 

under familiar conditions, compared with activity levels under novel conditions (F1,34 

=21.1, p < 0.001).  However, there was a significant Strain x Diet interaction on the 

locomotor  response in the familiar environment (F1,34 =6.5, p < 0.05); the AVD-

deficient BALB/c mice showed a significant reduction in locomotion compared with 

control BALB/c mice (F1,17 = 8.66, p = 0.009), while there was no significant effect of 

Diet in the C57BL/6J mice (F1,17 = 1.42, p = 0.250) (Fig.1c and d). 

<<Insert Fig. 1 about here>> 

 3.1.2 Elevated plus maze 

On the elevated plus maze, all mice entered the closed arms and all but two control 

mice entered the open arms at least once. There was a significant effect of Diet on 

the time spent on the open arms for the BALB/c mice (F1,14 = 14.57, p = 0.002). 

Compared to controls, the BALB/c AVD-deficient mice spent a significantly longer 
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time on the open arms (Fig. 2a and b).  There was no significant effect of Diet for the 

C57BL/6J mice (F1,14 = 0.43, p = 0.839). There was a significant main effect of Strain 

(F1,28 = 10.07, p = 0.004) on the distance travelled while on the elevated plus maze 

with C57BL/6J mice travelling further than the BALB/c mice, however, there was no 

significant effect of Diet on total distance travelled.  

<<Insert Fig. 2 about here>> 

3.1.3 Holeboard test 

In the holeboard test, all mice poked their noses into the holes. There was a 

significant main effect of Strain on the frequency of head-dipping (F1,28 = 5.12, p = 

0.032) as well as on the latency to groom (F1,28 = 4.26, p = 0.048) and the total 

distance travelled (F1,28 = 20.71, p = <0.001). However, there was no significant effect 

of Diet on any measure on the holeboard test. 

3.1.4 Light/dark test 

All mice entered the light chamber at least once during the test. There was no 

significant effect of Diet or Strain on the time to emerge, however, there was a 

significant effect of Strain on the frequency to enter the light chamber (F1,28 = 22.89, p 

<0.001). There was no effect of Diet on any measure on the light/dark test. 

3.1.5 Forced swim test 

All mice became increasingly immobile over the course of the forced swim test. There 

was no significant difference in the time spent immobile between diet groups from 

either strain. However, there was a significant effect of Strain (F1,28 = 417.48, p 
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<0.001) with the BALB/c mice spending a greater amount of time immobile than the 

C57BL/6J mice.  

3.1.6 Prepulse inhibition of the acoustic startle response 

All mice responded to increasing pulse amplitude with increased startle response. 

There was a significant interaction of Diet x Strain (F1,75 = 5.93, p = 0.017). Although 

there was no significant effect of Diet on the ASR of C57BL/6J mice (F1,38 = 0.03, p = 

0.874), there was a significant effect of Diet for the BALB/c mice (F1,37 = 23.52, p 

<0.001) with AVD-deficient mice showing an enhanced startle response compared to 

controls (Fig. 2c and d). There was no significant main effect of Diet (F1,75 = 0.08, p = 

0.785)  or Strain (F1,75 = 0.55, p = 0.459)  on PPI scores.  

3.1.7 Active avoidance 

Mice of each strain responded quite differently to the test of avoidance learning and 

some of the BALB/c mice had difficulty learning the avoidance paradigm all together. 

There was a significant Diet x Strain interaction for acquisition of learning (Day 1) 

(F1,28 = 4.63, p = 0.040). There was no significant effect of Diet on the latency to 

escape in C57BL/6J mice but there was a significant effect of Diet on the latency to 

escape for BALB/c mice during acquisition (F1,14 = 6.44, p = 0.024) (Fig. 3a and b). 

This difference did not reach significance on Day 2, for retention (F1,14 = 4.12, p = 

0.062) or on Day 3, for the extinction trial (F1,30 = 1.07, p = 0.310).  

There was no significant effect of Diet for the C57BL/6J mice on any of the response 

scores (avoid, escape or no response) on Day 1 or over the 3-day test. There was a 

significant effect of Diet (F1,14 = 6.62, p = 0.022) for the BALB/c mice on the no 

response score on Day 1 of the test; the AVD-deficient mice made fewer no response 
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scores than the controls. The effect of Diet on the no response score over the 3-day 

test did not reach significance (F1,30 = 4.05, p = 0.053). 

3.1.8 Social interaction test 

In the social interaction test there was no significant effect of Diet on either strain for 

any measure analysed. There were significant effects of Strain for following (F1,25 = 

29.82, p <0.001) and rearing (F1,25 = 60.63, p <0.001) with BALB/c mice having 

reduced following and rearing compared to the C57BL/6J mice.  

3.1.9 Hot plate test 

On the first trial of the hot plate test, there was a significant main effect of Strain 

(F1,28 = 51.02, p <0.001) but not of Diet: the C57BL/6J mice had a shorter latency to 

lick the hindpaw than the BALB/c mice. When analysing the BALB/c mice separately, 

there was a significant effect of Diet on the first trial (U14 = 16, p = 0.0325) with all the 

control BALB/c mice being removed from the hot plate at the end of the trial (30 s), 

because none of them licked their hind paw in response to the heat stimulus. 

When analysing the average response over three trials, there was a significant main 

effect of Strain (F1,28 = 72.72, p <0.001) and also a significant main effect of Diet (F1,28 

= 10.12, p = 0.004) with no Strain x Diet interaction. When analysing the strains 

separately, there was a significant effect of Diet (F1,14 = 7.86, p = 0.014) in the 

BALB/c strain but not in the C57BL/6J mice (F1,14 = 3.46, p = 0.084), the BALB/c 

AVD-deficient mice had a shorter latency to lick the hind paw compared to the control 

BALB/c mice (Fig. 3c and d).  

<<Insert Fig. 3 about here>> 
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3.2 Brain Neurochemistry 

Analysis of the neurotransmitter and metabolite levels from brain tissue indicated a 

significant effect of Strain on levels of noradrenaline (F1,28 = 27.05, p = <0.001), 5-

hydroxyindoleacetic acid (F1,28 = 22.62, p = <0.001), 3-methoxytyramine (F1,28 = 

12.60, p = 0.001), serine (F1,28 = 16.45, p = <0.001), glycine (F1,28 = 200.54, p = 

<0.001), tyrosine (F1,28 = 12.65, p = 0.001), GABA (F1,28 = 65.02, p = <0.001), and 

methionine (F1,28 = 6.15, p = 0.019). 

When analysing the BALB/c strain separately, there was a significant effect of Diet 

on the levels of glutamine (F1,14 = 4.98, p = 0.043), glutamate (F1,14 = 6.69, p = 

0.022), glycine (F1,14 = 6.24, p = 0.026) and GABA (F1,14 = 5.90, p = 0.029). 

Glutamine and glutamate levels were significantly lower in the AVD-deficient mice, 

whereas levels of glycine, lysine, and GABA were significantly higher in the AVD-

deficient mice (Table 1). 

There was a significant effect of Diet on the levels of 5-hydroxyindoleacetic acid 

(F1,14 = 12.97, p = 0.003), homovanillic acid (F1,14 = 4.69, p = 0.048), and serine (F1,14 

= 28.04, p = 0.000) in C57BL/6J mice. The levels of all three were higher in the AVD-

deficient mice (Table 1). The ratio of 5-hydroxytryptamine to 5-hydroxyindoleacetic 

acid was significantly altered (F1,14 = 9.16, p = 0.009) as was the ratio of dopamine to 

homovanillic acid (F1,14 = 8.34, p = 0.012). A summary of all the significant effects of 

Diet are found in Table 2. 

<<Insert Table 1 about here>> 

3.3 Protein analysis 
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GAD65/67 content showed a significant main effect of Diet (F1,28 = 6.41, p = 0.017) 

and of Strain (F1,28 = 38.17, p < 0.001) with no Strain x Diet interaction. The levels of 

GAD65/67 were lower in the AVD-deficient mice from both strains when compared to 

controls (Fig. 4).  

There was no significant effect of Diet on levels of catechol-O-methyl transferase 

(F1,27 = 0.12, p = 0.734), monoamine oxidase A (F1,27 = 3.25, p = 0.083) or glutamine 

synthetase (F1,28 = 0.38, p = 0.544) in the brain of either strain (data not shown).  

<<Insert Fig. 4 about here>> 

<<Insert Table 2 about here>> 

3.4 Behavioural Pharmacology 

As expected, locomotion was greatly increased by acute treatment with either 

amphetamine or MK-801. There was no significant main effect of Diet on the 

locomotor response to D-amphetamine (F1,34 = 0.002, p = 0.965) but there was a 

significant effect of Strain (F1,34 = 17.39, p = <0.001), with the C57BL/6J mice 

showing greater amphetamine-induced locomotion than the BALB/c mice (Fig. 5a 

and b). There was no significant main effect of Diet (F1,28 = 0.99, p = 0.329) or Strain 

(F1,28 = 2.65, p = 0.115) on the locomotor response to MK-801 (Fig. 5c and d). 

<<Insert Fig. 5 about here>> 

 

4. Discussion 
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The main outcomes of this study were that vitamin D deficiency in adult mice 

enhanced locomotion and produced a small reduction in the enzymes involved in 

GABA synthesis (GAD65/67). However, many other behavioural and neurochemical 

alterations were dependent on the background strain. The AVD-deficient BALB/c 

mice displayed altered behaviour on the elevated plus maze, and an enhanced 

response to aversive stimuli that included shock, heat and sound. This was 

accompanied by alterations in amino acid metabolism within the brain. AVD-deficient 

C57BL/6J mice had a more subtle behavioural phenotype, and a neurochemical 

profile with changes in dopamine and 5-hydroxytryptamine turnover.  

Spontaneous hyperlocomotion in a novel open field has been consistently observed 

in other rodent models of vitamin D deficiency, although these have been prenatal 

exposures. For example, 129/SvJ DVD-deficient mice exhibited spontaneous 

hyperlocomotion in the open field, and 129/SvJ and C57BL/6J DVD-deficient mice 

were hyper-explorative on the hole-board test [40]. Adult DVD deficient rats are more 

active than controls in novel environments [47,48], show an increased 

psychomimetic-induced hyperlocomotion and an enhanced startle response after 

MK-801 injection [49,50]. This suggests that the absence of vitamin D may lead to 

alterations in similar neural circuits in both the developing and adult brain.  

With respect to schizophrenia, the AVD mice did not replicate behavioural features 

typically seen in other animal models of schizophrenia. For example, two prominent 

features include deficits in PPI [51] and enhanced locomotor response to 

amphetamine [49]. These features are both based on alterations in dopamine 

metabolism, with the dopaminergic system being strongly implicated in the 

development of schizophrenia [52]. Moreover, although DVD-deficient rats show 

enhanced MK-801 induced locomotion [48,50] this was not seen in DVD-deficient 
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129/SvJ or C57BL/6J mice [45] or in AVD-deficient BALB/c or C57BL/6J mice in the 

current study. 

However, the AVD-deficient BALB/c mice had alterations in glutamate and glutamine 

levels in brain tissue, which may indicate a disruption in glutamatergic 

neurotransmission. There is mounting evidence to suggest that NMDA receptor 

dysfunction may contribute to schizophrenia symptoms, particularly those that are 

not relieved by antipsychotics. This dysfunction may be related more to the negative 

and cognitive symptoms of schizophrenia [53]. It has also been suggested that non-

NMDA receptor dysregulation may be involved in schizophrenia [54]. While the 

alterations in glutamate metabolism seen in the AVD-deficient BALB/C mice did not 

translate into known behavioural features of schizophrenia, this does not rule out the 

relevance these mice might have in schizophrenia research and for other 

neurological disorders, such as anxiety. 

The underlying neurobiological mechanisms of the behaviour of AVD deficient mice 

remain to be clarified. Despite a consistent decrease in GAD65/67 levels in both 

strains of mice used in this study, there was little overlap between strains for 

changes seen in brain neurochemistry. The small but significant reduction in 

GAD65/67 levels may be highly relevant to psychiatric conditions in which altered 

GABAergic neurotransmission has been implicated, including schizophrenia [55], 

autism [56], anxiety [57], depression [58], bipolar disorder [57,59] and obsessive 

compulsive disorder [57,60]. For example, reductions in GAD67 in parietal cortex 

and GAD65 in cerebellum were shown in post mortem brain tissue from autistic 

patients when compared to controls [61]. Another study reported global reductions in 

levels of GAD65/67 in the cerebella of subjects with schizophrenia, bipolar disorder 

and major depression [59]. Despite reports of small global reductions in GAD 65/67 
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these changes were shown to be accounted for by alterations in distinct 

subpopulations of neurons, including the larger-sized GABAergic dentate cells within 

the cerebellum [62]. In the current study subtle variations in specific brain regions or 

cell populations could not be detected as all analyses were performed on whole 

brain homogenates. Future studies would need to investigate localised changes in 

defined cell populations. 

The two strains used in this study differed on a range of physiological parameters, 

behavioural responses, and drug-induced behaviours, as well as in levels of several 

neurochemicals. The non-emotional, high locomotor C57Bl/6 strain showed very little 

effect of AVD deficiency except spontaneous hyperlocomotion, while the highly 

emotional, neophobic BALB/c strain showed significant effects of AVD deficiency, 

particularly involving limbic system functions. One of the major differences found 

between BALB/c and C57Bl/6 mice is the strong defensive behaviour the BALB/c 

mice show in response to unfamiliar places (neophobia). This is proposed as ‘trait’ 

anxiety, a stable characteristic of behaviour. Administration of benzodiazepines is 

able to abolish neophobia in BALB/c mice, whereas several other anxiolytic 

compounds cannot. Benzodiazepines are also devoid of anxiolytic effects in C57Bl/6 

mice [63]. The BALB/c strain shows a significant reduction in benzodiazepine 

receptor density compared to the C57Bl/6 strain [64]. This may at least in part 

explain the genetically determined predisposition to anxiety seen in the BALB/c mice. 

There was a 50% reduction in 25-OH D3 levels in control BALB/c mice compared to 

control C57BL/6 mice. Although AVD resulted in 25-OH D3 levels at the lower limit of 

detection, we suggest that there may be underlying differences in vitamin D 

metabolism between the two strains. For example, BALB/c mice have a 17-fold 

reduction in the levels of 1αOHase within the kidney compared to C57BL/6J mice 
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[65], which reduces the availability of active 1,25 dihydroxyvitamin D3 in the BALB/c 

strain. Moreover, wide variation in basal 25(OH)D levels have been reported in 18 

inbred mouse strains [66], the highest values were obtained in C57BL/6J (62.5 

nmol/L), with reduced amounts in all other strains examined, for example EVB/J (55 

nmol/L) C3H/HeJ (43 nmol/L), BALB/cJ (42 nmol/L), DBA/2J (37 nmol/L), to the 

lowest SJL/J (35 nmol/L). These values are consistent with those reported in our 

study; C57Bl/6J (65.3 nmol/L) and BALB/cJ (32.0 nmol/L). Therefore, the BALB/c 

strain may be genetically vulnerable to vitamin D deficiency, which could explain why 

they show a greater effect of the vitamin D deficiency both on behaviour and brain 

function. However, there are, as yet, no systematic reports in the literature 

correlating behavioural endophenotypes and basal vitamin D levels in multiple inbred 

mouse strains. It may be that animals with chronic insufficiency (such as the BALB/c 

strain) are more prone to develop behavioural disorders if they are exposed to a 

period of vitamin D deficiency. These studies may be a valuable area of future 

research. 

The biological consequences of relatively small changes in neurotransmitter levels 

remains to be established. However, we found significant strain differences in the 

effect of AVD deficiency on catecholamine, indolamine and amino acid levels, with a 

predominantly catecholamine/indolamine phenotype in C57BL/6 mice and a 

predominantly amino acid phenotype in BALB/c mice. There is significant variation 

between C57BL/6 and BALB/c mice on metabolic protein levels in brain tissue. For 

example, differences were shown for nucleic acid, amino acid and carbohydrate 

metabolism in proteomic analysis of hippocampal tissue from these strains of mice 

[67]. Strain dependent regulation of amino acid metabolism could explain why AVD-

deficiency had a greater impact on GABAergic and glutamatergic neurotransmitter 
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systems in BALB/c mice. With respect to indolamine levels (5-HT and 5-HIAA) 

C57BL/6 mice have approximately 50% higher rates of 5-HT synthesis than BALB/c 

mice because of a single nucleotide polymorphism in the mTph2 gene (C1473G) 

[68], which may lead to a greater vulnerability in AVD-deficient C57BL/6 mice when 

compared with BALB/c mice.  

The AVD-deficient BALB/c mice had a small increase in the levels of GABA and 

glycine, and decreased levels of glutamate and glutamine in brain tissue. GABA is 

the major inhibitory neurotransmitter in the brain and it is synthesised from glutamate 

by two isoforms of GAD; GAD65 and GAD67. Reduced levels of GAD65/67 are 

typically associated with a reduction in GABA synthesis. However, we observed an 

increase in GABA levels in AVD-deficient BALB/c mice and, despite a similar 

reduction in GAD65/67 levels in C57BL/6 mice, there were no significant changes to 

either glutamate or GABA levels in this strain. The mechanism/s by which vitamin D 

deficiency could lead to increases in GABA are unknown. However, recent studies in 

developing zebrafish indicate that the active metabolite of vitamin D affects a wide 

range of genes, including those involved with amino acid metabolism [69], although 

similar studies have not been carried out in rodents. It was shown that GAD65 KO 

mice maintain normal levels of GABA content in brain [70] and the overall reduction 

in GAD enzymes may signify a reduced conversion of glutamate to GABA, but 

differences in biochemical alterations following a reduction in GAD65/67 may vary 

between BALB/c and C57BL/6 mice. 

Positive modulators of GABAergic neurotransmission that function to increase GABA 

brain levels produce anxiolytic effects in rodent models of anxiety [71]. 

Chlordiazepoxide is an anxiolytic, GABA-enhancing agent, which, when given to 

BALB/c mice, produces several of the behavioural outcomes seen in this study. 
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Chlordiazepoxide administration in mice can lead to an increase in the time spent on 

the open arms of the elevated plus maze and lead to enhanced avoidance 

responses during active avoidance [72,73]. Repeated daily doses of 

chlordiazepoxide have also been shown to increase locomotion in the open field in 

BALB/c mice [74]. Although we did not measure functional changes in GABA 

receptors, it may be that the increased levels of GABA observed here were sufficient 

to produce the behavioural phenotype. It is also possible that the neurochemical 

changes could either be a direct consequence of vitamin D deficiency, or indirectly 

via altered baseline behaviour, such as altered locomotion in the home cage.  

There is little convergent evidence from three separate tests (EPM, holeboard, 

light/dark test) to suggest that AVD BALB/c mice had an anxiolytic phenotype. By 

contrast the evidence would suggest that the BALB/c AVD mice are more reactive, 

with enhanced open arm time on the EPM, greater ASR response, reduced latency 

to escape a footshock in the active avoidance, and reduced latency in the hot plate 

test. BALB/c mice typically freeze in response to aversive stimuli. The control 

BALB/c mice had difficulty responding in the active avoidance task. Instead of 

moving into the non-shocked compartment after the presentation of cues or foot-

shock, they froze in place, unable to move. The AVD-deficient BALB/c mice seemed 

able to overcome their natural freezing instinct to react by moving into the non-

shocked compartment on presentation of the stimulus, shortening their latency to 

escape over the length of the test when compared to controls. An increase in pain 

sensitivity could enhance the response to foot shock during avoidance learning and 

quicken their response in the hot plate test.  

We did not compare directly the effects of critical periods of vitamin D deficiency (i.e. 

gestational versus adult) in the current study. Data from developmental studies 
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indicates that a number of different mechanisms may exist by which vitamin D 

impacts both during brain development and on adult, from altered proliferation, 

apoptosis or mitosis [11]. There are no data on developmental vitamin D deficiency 

in BALB/c mice. We have published data to show that DVD C57BL/6 mice also show 

hyperlocomotion (Harms et al., 2008) and this would suggest that there may be a 

similar impact on the developing and adult brain. Comparisons between 

developmental and adult vitamin D deficiency in BALB/c mice would need to be 

carried out to address this question directly. In addition, the current findings were 

from male mice and these may not be generalizable to female mice and so these 

studies would also need to be performed.  

The results from the current study show that adult vitamin D deficiency has effects 

on behaviour and brain function in two inbred mouse strains. We found alterations 

consistent across both strains (hyperlocomotion and reduced GAD65/67) with many 

being altered only in the BALB/c strain, which was more susceptible to AVD than 

C57Bl/6. This suggests that our findings are not generaliseable to all mouse strains, 

although this is likely to be the case for many manipulations, for example 

environmental enrichment has strain specific effects on behaviour [75]. The current 

findings suggest that both excitatory and inhibitory neurotransmitter systems are 

affected by vitamin D deficiency in adult mice, which may be further exacerbated by 

the background strain or by detrimental environmental exposures or genomic 

instability. With vitamin D deficiency becoming increasingly recognised throughout 

the world [76,77], it is important to determine to what extent vitamin D deficiency 

contributes to adverse brain outcomes in light of the fact that supplementation is 

readily available. In particular, the findings seen in the AVD-deficient BALB/c mice 
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may provide a suitable tool for future investigations into the effects of vitamin D 

deficiency on the adult brain.  
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Figure 1. Behaviour in control and AVD-deficient C57BL/6J (a and c) and control and AVD-

deficient BALB/c (b and d) mice in the novel open field (n=28 per group a and b) andin the 

familiar open field (n=9-10 per group, c and d). In the novel open field arena, the AVD-

deficient mice from both the C57BL/6J and BALB/c strains showed significantly increased 

locomotion compared to controls. While, in the familiar open field the BALB/c AVD-deficient 

mice showed a significant reduction in locomotion when compared to controls, with no 

significant change in the C57BL/6J mice. p<0.05 (*), p<0.01 (**). 

Figure 2. Behaviour in control and AVD-deficient C57BL/6J (a and c) and control and AVD-

deficient BALB/c (b and d) mice on the elevated plus maze (n=8 per group, a and b) and 

acoustic startle response (n=20 per group, c and d). On the elevated plus maze, the BALB/c 

AVD-deficient mice spent significantly more time on the open arms when compared to 

control mice. In the acoustic startle response, BALB/c AVD-deficient mice had a significantly 

greater startle response than the control mice at pulse intensities of 90, 100, 110 and 120 

dB. p<0.01 (**). 

Figure 3. Behaviour in control and AVD-deficient C57BL/6J (a and c) and control and AVD-

deficient BALB/c (b and d) mice in the test of active avoidance (a and b), and on the hot plate 

test (c and d). In the test of active avoidance, the BALB/c AVD-deficient mice had a reduced 

latency to escape on Day 1 during acquisition, when compared to controls. On the hot plate 

test, the BALB/c AVD-deficient mice had a significantly shorter latency to link the hind paw 

when compared to the control mice, averaged over the 3 trials. p<0.05 (*), n=8 per group. 

Figure 4. Western Blots for GAD65/67 in control and AVD-deficient C57BL/6J (a) and control 

and AVD-deficient BALB/c (b) mice. There was a significant reduction in GAD65/67 for  AVD-

deficient mice compared to controls. Significance is noted as follows: <0.05 (*). A 

representative gel is shown in (c) which includes AVD-deficient samples (AVD) and control 

samples (Cont), n=8 per group.  
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Figure 5. Psychomimetic-induced hyperlocomotion in control and AVD-deficient C57BL/6J (a 

and c) and control and AVD-deficient BALB/c (b and d) mice in response to D-amphetamine 

(a and b), and MK-801 (c and d). The response to D-amphetamine was measured over 180 

min and while there was a significant difference in hyperlocomotion between strains, there 

was no significant effect of Diet. The response to MK-801 was measured over 210 mins and 

there was no significant effect of Diet or Strain on hyperlocomotion, n=8-10 per group. 
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Table 1. Mean (± SEM) levels for catecholamines and amino acids in brain tissue of 
control and AVD-deficient C57BL/6J and BALB/c mice.  

 C57BL/6J BALB/c 

(ng/g) Control AVD-deficient  Control AVD-deficient  

Catecholamines       

Noradrenaline  409.2 ± 4.7 387.6 ± 15.3  313.5 ± 18.8 349.2 ± 7.4  

Dihydroxyphenylacetic 
Acid  

111.7 ± 2.0 111.7 ± 4.1  113.5 ± 2.2 120.1 ± 2.7  

Dopamine  1122.3 ± 
23.5 

1093.6 ± 27.1  1120.6 ± 16.1 1134.7 ± 18.4  

5-hydroxy- 

indoleacetic Acid  

329.2 ± 8.7 388.0 ± 13.8 * 291.9 ± 13.9 311.3 ± 10.8  

Homovanillic Acid  187.9 ± 4.3 207.7 ± 8.0 * 197.3 ± 9.6 199.3 ± 5.9  

3-methoxytyramine  147.9 ± 5.2 150.6 ± 4.8  132.5 ± 4.7 132.3 ± 4.3  

5-hydroxytryptamine  557.1 ± 13.0 565.5 ± 9.1  507.7 ± 24.7 551.9 ± 12.3  

Amino acids       

Histidine  8.7 ± 1.7 12.2 ± 0.8  11.5 ± 2.3 15.2 ± 0.9  

Arginine  10.9 ± 1.5 10.7 ± 1.5  12.1 ± 0.9 13.6 ± 0.6  

Glutamine  659.9 ± 14.7 665.7 ± 56.2  712.2 ± 27.6 642.4 ± 14.8 * 

Serine  59.0 ± 0.8 67.7 ± 1.4 * 50.3 ± 2.8 58.7 ± 2.9  

Aspartic Acid  330.7 ± 13.7 346.7 ± 9.6  292.3 ± 33.7 289.6 ± 31.8  

Glutamate  1287.3 ± 
37.6 

1280.2 ± 27.6  1368.0 ± 39.1 1251.2 ± 22.6 * 

Glycine  54.6 ± 1.4 52.2 ± 1.3  36.4 ± 0.7 38.9 ± 0.7 * 

Taurine  1229.0 ± 
61.8 

1108.3 ± 39.4  1102.5 ± 40.5 1108.3 ± 24.0  

Lysine  53.1 ± 9.5 48.7 ± 5.7  38.9 ± 3.8 50.9 ± 2.6 * 

Tyrosine  14.1 ± 2.1 14.3 ± 2.0  6.5 ± 1.8 8.0 ± 2.0  

Alanine  28.3 ± 3.9 26.2 ± 5.6  26.8 ± 2.9 33.9 ± 5.0  

-aminobutryic Acid  273.2 ± 11.6 273.2 ± 4.5  206.2 ± 5.4 223.9 ± 4.9 * 

Methionine  11.2 ± 0.3 10.9 ± 0.5  10.0 ± 0.4 10.0 ± 0.5  

* P<0.05 within strain comparison between control and AVD-deficient values. 

Table(s)



 
Table 2. A summary of the significant results found in the two strains of AVD-
deficient mice.  
 C57BL/6J AVD-deficient BALB/c AVD-deficient 

Behavioural Test Battery   

Novel Open Field   

Familiar Open Field −  

Elevated Plus Maze −  

Acoustic Startle Response 

Active Avoidance Aquisition 

− 

− 

 

 

Hot Plate Test −  

Neurochemistry   

Glutamine −  

Glutamate −  

Glycine −  

-aminobutyric acid −  

5-hydroxyindoleacetic acid  − 

Homovanillic acid  − 

Serine  − 

5-hydroxytryptamine: 5-hydroxy 

indoleacetic acid 

 − 

Dopamine: Homovanillic acid  − 

Proteins   

Glutamate decarboxylase 65/67   

(  increased,  decreased, − no change). Experiments that had no change in 
either strain are omitted from this table (p = <0.05). 
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