6,084 research outputs found
Placer mining in Alaska II
During July, August and September, 1979, a team from the Mineral Industry Research Laboratory visited a number of placer mining districts that could be reached by automobile, hence at a reasonable cost for transportation. These districts yielded varying amounts of information that will be of value to the industry. The district visited were: 1. Fairbanks, 2. Circle (Birch Creak), 3. Livengood (Tolovana), 4. Manley Hot Springs, 5. Fortymile, 6. Klondike, 7. Kantishna, 8. Yentna.University of Alaska Mining and Mineral Resources Research Institute.Placer mining in Alaska II -- Selected references -- List of figures
AGROINDUSTRIALIZATION IN EMERGING MARKETS: OVERVIEW AND STRATEGIC CONTEXT
This article offers an overview for a special issue on agroindustrialization. It reviews eleven articles analyzing the agroindustrialization process in Latin America and Asia. It sets out a conceptual framework from the organizational economics and strategic management literature to enhance the understanding of the process of agroindustrialization from a competitive strategy point of view.Agribusiness, Industrial Organization,
Towards a wave--extraction method for numerical relativity: III. Analytical examples for the Beetle--Burko radiation scalar
Beetle and Burko recently introduced a background--independent scalar
curvature invariant for general relativity that carries information only about
the gravitational radiation in generic spacetimes, in cases where such
radiation is incontrovertibly defined. In this paper we adopt a formalism that
only uses spatial data as they are used in numerical relativity and compute the
Beetle--Burko radiation scalar for a number of analytical examples,
specifically linearized Einstein--Rosen cylindrical waves, linearized
quadrupole waves, the Kerr spacetime, Bowen--York initial data, and the Kasner
spacetime. These examples illustrate how the Beetle--Burko radiation scalar can
be used to examine the gravitational wave content of numerically generated
spacetimes, and how it may provide a useful diagnostic for initial data sets.Comment: 23 pages, 4 figures; We changed the convention used, corrected typos,
and expanded the discussio
Quasiequilibrium sequences of black-hole--neutron-star binaries in general relativity
We construct quasiequilibrium sequences of black hole-neutron star binaries
for arbitrary mass ratios by solving the constraint equations of general
relativity in the conformal thin-sandwich decomposition. We model the neutron
star as a stationary polytrope satisfying the relativistic equations of
hydrodynamics, and account for the black hole by imposing equilibrium boundary
conditions on the surface of an excised sphere (the apparent horizon). In this
paper we focus on irrotational configurations, meaning that both the neutron
star and the black hole are approximately nonspinning in an inertial frame. We
present results for a binary with polytropic index n=1, mass ratio
M_{irr}^{BH}/M_{B}^{NS}=5 and neutron star compaction
M_{ADM,0}^{NS}/R_0=0.0879, where M_{irr}^{BH} is the irreducible mass of the
black hole, M_{B}^{NS} the neutron star baryon rest-mass, and M_{ADM,0}^{NS}
and R_0 the neutron star Arnowitt-Deser-Misner mass and areal radius in
isolation, respectively. Our models represent valid solutions to Einstein's
constraint equations and may therefore be employed as initial data for
dynamical simulations of black hole-neutron star binaries.Comment: 5 pages, 1 figure, revtex4, published in Phys.Rev.
Quasiequilibrium black hole-neutron star binaries in general relativity
We construct quasiequilibrium sequences of black hole-neutron star binaries
in general relativity. We solve Einstein's constraint equations in the
conformal thin-sandwich formalism, subject to black hole boundary conditions
imposed on the surface of an excised sphere, together with the relativistic
equations of hydrostatic equilibrium. In contrast to our previous calculations
we adopt a flat spatial background geometry and do not assume extreme mass
ratios. We adopt a Gamma=2 polytropic equation of state and focus on
irrotational neutron star configurations as well as approximately nonspinning
black holes. We present numerical results for ratios of the black hole's
irreducible mass to the neutron star's ADM mass in isolation of
M_{irr}^{BH}/M_{ADM,0}^{NS} = 1, 2, 3, 5, and 10. We consider neutron stars of
baryon rest mass M_B^{NS}/M_B^{max} = 83% and 56%, where M_B^{max} is the
maximum allowed rest mass of a spherical star in isolation for our equation of
state. For these sequences, we locate the onset of tidal disruption and, in
cases with sufficiently large mass ratios and neutron star compactions, the
innermost stable circular orbit. We compare with previous results for black
hole-neutron star binaries and find excellent agreement with third-order
post-Newtonian results, especially for large binary separations. We also use
our results to estimate the energy spectrum of the outgoing gravitational
radiation emitted during the inspiral phase for these binaries.Comment: 17 pages, 15 figures, published in Phys. Rev.
A demonstration of motion base design alternatives for the National Advanced Driving Simulator
A demonstration of the capability of NASA's Vertical Motion Simulator to simulate two alternative motion base designs for the National Advanced Driving simulator (NADS) is reported. The VMS is located at ARC. The motion base conditions used in this demonstration were as follows: (1) a large translational motion base; and (2) a motion base design with limited translational capability. The latter had translational capability representative of a typical synergistic motion platform. These alternatives were selected to test the prediction that large amplitude translational motion would result in a lower incidence or severity of simulator induced sickness (SIS) than would a limited translational motion base. A total of 10 drivers performed two tasks, slaloms and quick-stops, using each of the motion bases. Physiological, objective, and subjective measures were collected. No reliable differences in SIS between the motion base conditions was found in this demonstration. However, in light of the cost considerations and engineering challenges associated with implementing a large translation motion base, performance of a formal study is recommended
Phase Transitions in a Dusty Plasma with Two Distinct Particle Sizes
In semiconductor manufacturing, contamination due to particulates
significantly decreases the yield and quality of device fabrication, therefore
increasing the cost of production. Dust particle clouds can be found in almost
all plasma processing environments including both plasma etching devices and in
plasma deposition processes. Dust particles suspended within such plasmas will
acquire an electric charge from collisions with free electrons in the plasma.
If the ratio of inter-particle potential energy to the average kinetic energy
is sufficient, the particles will form either a liquid structure with short
range ordering or a crystalline structure with long range ordering. Otherwise,
the dust particle system will remain in a gaseous state. Many experiments have
been conducted over the past decade on such colloidal plasmas to discover the
character of the systems formed, but more work is needed to fully understand
these structures. The preponderance of previous experiments used monodisperse
spheres to form complex plasma systems
Implementing an apparent-horizon finder in three dimensions
Locating apparent horizons is not only important for a complete understanding
of numerically generated spacetimes, but it may also be a crucial component of
the technique for evolving black-hole spacetimes accurately. A scheme proposed
by Libson et al., based on expanding the location of the apparent horizon in
terms of symmetric trace-free tensors, seems very promising for use with
three-dimensional numerical data sets. In this paper, we generalize this scheme
and perform a number of code tests to fully calibrate its behavior in
black-hole spacetimes similar to those we expect to encounter in solving the
binary black-hole coalescence problem. An important aspect of the
generalization is that we can compute the symmetric trace-free tensor expansion
to any order. This enables us to determine how far we must carry the expansion
to achieve results of a desired accuracy. To accomplish this generalization, we
describe a new and very convenient set of recurrence relations which apply to
symmetric trace-free tensors.Comment: 14 pages (RevTeX 3.0 with 3 figures
- …