13,952 research outputs found
Distributional Effects of Fiscal Consolidation.
This paper examines the distributional consequences of public debt reduction achieved through spending cuts. Under the assumption that public goods and transfers are relatively more valuable to the poor, our calculations indicate that the elderly poor stand to lose from such policies. Debt reduction produces short-term deficits and long-term surpluses, and when future surpluses are recycled into higher provision of public goods and transfers, future generations of poor could gain. If future surpluses are recycled through lower labour taxes, working households in the future would be positively affected. We conclude that debt reduction could have positive or negative impacts on vertical equity, yet inter- rather than intra-generational equity is likely to pose the greatest obstacle to fiscal consolidation. Based on majority voting by self-interested households, debt reduction would never occur. Yet, in a formal social welfare analysis, some debt reduction programmes may be deemed beneficial with social discount factors as high as two percent. When we then consider alternative time profiles for debt reduction, we conclude that slower is better.
Continuous electrophoresis in glass bead media
The purpose of this investigation was to develop a practical apparatus for continuous electrophoresis in a bed of glass beads and to investigate the operating parameters of the apparatus
On Kuiper\u27s Question Whether Taut Submanifolds Are Algebraic
We prove that any connected proper Dupin hypersurface in Rn is analytic algebraic and is an open subset of a connected component of an irreducible algebraic set. From this we also prove that every taut submanifold of dimension m ≤ 4 is algebraic by exploring a finiteness condition
Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics
We present the ProCS method for the rapid and accurate prediction of protein
backbone amide proton chemical shifts - sensitive probes of the geometry of key
hydrogen bonds that determine protein structure. ProCS is parameterized against
quantum mechanical (QM) calculations and reproduces high level QM results
obtained for a small protein with an RMSD of 0.25 ppm (r = 0.94). ProCS is
interfaced with the PHAISTOS protein simulation program and is used to infer
statistical protein ensembles that reflect experimentally measured amide proton
chemical shift values. Such chemical shift-based structural refinements,
starting from high-resolution X-ray structures of Protein G, ubiquitin, and SMN
Tudor Domain, result in average chemical shifts, hydrogen bond geometries, and
trans-hydrogen bond (h3JNC') spin-spin coupling constants that are in excellent
agreement with experiment. We show that the structural sensitivity of the
QM-based amide proton chemical shift predictions is needed to refine protein
structures to this agreement. The ProCS method thus offers a powerful new tool
for refining the structures of hydrogen bonding networks to high accuracy with
many potential applications such as protein flexibility in ligand binding.Comment: PLOS ONE accepted, Nov 201
Optical nulling apparatus and method for testing an optical surface
An optical nulling apparatus for testing an optical surface includes an aspheric mirror having a reflecting surface for imaging light near or onto the optical surface under test, where the aspheric mirror is configured to reduce spherical aberration of the optical surface under test. The apparatus includes a light source for emitting light toward the aspheric mirror, the light source longitudinally aligned with the aspheric mirror and the optical surface under test. The aspheric mirror is disposed between the light source and the optical surface under test, and the emitted light is reflected off the reflecting surface of the aspheric mirror and imaged near or onto the optical surface under test. An optical measuring device is disposed between the light source and the aspheric mirror, where light reflected from the optical surface under test enters the optical measuring device. An imaging mirror is disposed longitudinally between the light source and the aspheric mirror, and the imaging mirror is configured to again reflect light, which is first reflected from the reflecting surface of the aspheric mirror, onto the optical surface under test
In situ microfluidic dialysis for biological small-angle X-ray scattering
Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for simultaneous SAXS and ultraviolet absorption measurements during protein dialysis, integrated directly on a SAXS beamline. Microfluidic dialysis can be used for monitoring structural changes in response to buffer exchange or, as demonstrated, protein concentration. By collecting X-ray data during the concentration procedure, the risk of inducing protein aggregation due to excessive concentration and storage is eliminated, resulting in reduced sample consumption and improved data quality. The proof of concept demonstrates the effect of halted or continuous flow in the microfluidic device. No sample aggregation was induced by the concentration process at the levels achieved in these experiments. Simulations of fluid dynamics and transport properties within the device strongly suggest that aggregates, and possibly even higher-order oligomers, are preferentially retained by the device, resulting in incidental sample purification. Hence, this versatile microfluidic device enables investigation of experimentally induced structural changes under dynamically controllable sample conditions
Fish schooling as a basis for vertical axis wind turbine farm design
Most wind farms consist of horizontal axis wind turbines (HAWTs) due to the
high power coefficient (mechanical power output divided by the power of the
free-stream air through the turbine cross-sectional area) of an isolated
turbine. However when in close proximity to neighbouring turbines, HAWTs suffer
from a reduced power coefficient. In contrast, previous research on vertical
axis wind turbines (VAWTs) suggests that closely-spaced VAWTs may experience
only small decreases (or even increases) in an individual turbine's power
coefficient when placed in close proximity to neighbours, thus yielding much
higher power outputs for a given area of land. A potential flow model of
inter-VAWT interactions is developed to investigate the effect of changes in
VAWT spatial arrangement on the array performance coefficient, which compares
the expected average power coefficient of turbines in an array to a
spatially-isolated turbine. A geometric arrangement based on the configuration
of shed vortices in the wake of schooling fish is shown to significantly
increase the array performance coefficient based upon an array of 16x16 wind
turbines. Results suggest increases in power output of over one order of
magnitude for a given area of land as compared to HAWTs.Comment: Submitted for publication in BioInspiration and Biomimetics. Note:
The technology described in this paper is protected under both US and
international pending patents filed by the California Institute of Technolog
- …