179 research outputs found

    The visitor from an ancient galaxy: A planetary companion around an old, metal-poor red horizontal branch star

    Full text link
    We report the detection of a planetary companion around HIP 13044, a metal-poor red horizontal branch star belonging to a stellar halo stream that results from the disruption of an ancient Milky Way satellite galaxy. The detection is based on radial velocity observations with FEROS at the 2.2-m MPG/ESO telescope. The periodic radial velocity variation of P=16.2 days can be distinguished from the periods of the stellar activity indicators. We computed a minimum planetary mass of 1.25 Jupiter masses and an orbital semimajor axis of 0.116 AU for the planet. This discovery is unique in three aspects: First, it is the first planet detection around a star with a metallicity much lower than few percent of the solar value; second, the planet host star resides in a stellar evolutionary stage that is still unexplored in the exoplanet surveys; third, the planetary system HIP 13044 most likely has an extragalactic origin in a disrupted former satellite of the Milky Way.Comment: 5 pages, 2 figures, 2 tables, submitted to the Proceedings of the 276th IAU Symposium "The Astrophysics of Planetary Systems

    Navigation by extrapolation of geomagnetic cues in a migratory songbird

    Get PDF
    Displacement experiments have demonstrated that experienced migratory birds translocated thousands of kilometers away from their migratory corridor to unfamiliar areas can orient towards and ultimately reach their intended destinations. This implies that they are capable of “true navigation”, commonly defined as the ability to return to a known goal after displacement to a completely unknown location without relying on familiar surroundings, cues that emanate from the destination, or information collected during the outward journey. In birds, true navigation appears to require previous migratory experience, and it is generally assumed that, to correct for displacements outside the familiar area, birds initially have to gather information within their year-round distribution range, learn predictable spatial gradients of some environmental cues within it and extrapolate from those to cues of unfamiliar magnitude ̶ the gradient hypothesis. However, the nature of the cues used, and evidence for actual extrapolation remains elusive. Geomagnetic cues (inclination, declination and total intensity) provide predictable spatial gradients across large parts of the globe and could serve for navigation. We tested the orientation of long-distance migrants, Eurasian reed warblers (Acrocephalus scirpaceus), exposing them to geomagnetic cues of unfamiliar magnitude only encountered beyond their natural distribution range. The birds demonstrated re-orientation towards their natural migratory corridor as if they were translocated to the corresponding geographic location but only when all naturally occurring magnetic cues were presented, not when declination was changed alone. This result represents direct evidence for migratory birds’ ability to navigate using geomagnetic cues extrapolated beyond the range of magnitude they previously experienced

    Evidence for a directed southward autumn migration of nocturnal noctuid moths in central Europe

    Get PDF
    Insect migrations are spectacular natural events and resemble a remarkable relocation of biomass between two locations in space. Unlike the well-known migrations of daytime flying butterflies, such as the painted lady (Vanessa cardui) or the monarch butterfly (Danaus plexippus), much less widely known are the migrations of nocturnal moths. These migrations - typically involving billions of moths from different taxa - have recently attracted considerable scientific attention. Nocturnal moth migrations have traditionally been investigated by light trapping and by observations in the wild, but in recent times a considerable improvement in our understanding of this phenomenon has come from studying insect orientation behaviour, using vertical-looking radar. In order to establish a new model organism to study compass mechanisms in migratory moths, we tethered each of two species of central European Noctuid moths in a flight simulator to study their flight bearings: the red underwing (Catocala nupta) and the large yellow underwing (Noctua pronuba). Both species had significantly oriented flight bearings under an unobscured view of the clear night sky and in the Earth's natural magnetic field. Red underwings oriented south-southeast, while large yellow underwings oriented southwest, both suggesting a southerly autumn migration towards the Mediterranean. Interestingly, large yellow underwings became disoriented on humid (foggy) nights while red underwings remained oriented. We found no evidence in either species for a time-independent sky compass mechanism as previously suggested for the large yellow underwing

    A magnet attached to the forehead disrupts magnetic compass orientation in a migratory songbird

    Get PDF
    For studies on magnetic compass orientation and navigation performance in small bird species, controlled experiments with orientation cages inside an electromagnetic coil system are the most prominent methodological paradigm. These are, however, not applicable when studying larger bird species and/or orientation behaviour during free flight. For this, researchers have followed a very different approach. By attaching small magnets to birds, they intended to deprive them of access to meaningful magnetic information. Unfortunately, results from studies using this approach appear rather inconsistent. As these are based on experiments with birds under free flight conditions, which usually do not allow exclusion of other potential orientation cues, an assessment of the overall efficacy of this approach is difficult to conduct. Here, we directly test the efficacy of small magnets for temporarily disrupting magnetic compass orientation in small migratory songbirds using orientation cages under controlled experimental conditions. We found that birds which have access to the Earth’s magnetic field as their sole orientation cue show a general orientation towards their seasonally appropriate migratory direction. When carrying magnets on their forehead under these conditions, the same birds become disoriented. However, under changed conditions that allow birds access to other (i.e. celestial) orientation cues, any disruptive effect of the magnets they carry appears obscured. Our results provide clear evidence for the efficacy of the magnet approach for temporarily disrupting magnetic compass orientation in birds, but also reveal its limitations for application in experiments under free flight conditions

    New HARPS and FEROS observations of GJ1046

    Full text link
    In this paper we present new precise Doppler data of GJ1046 taken between November 2005 and July 2018 with the HARPS and the FEROS high-resolution spectographs. In addition, we provide a new stellar mass estimate of GJ1046 and we update the orbital parameters of the GJ1046 system. These new data and analysis could be used together with the GAIA epoch astrometry, when available, for braking the sin⁥i\sin i degeneracy and revealing the true mass of the GJ1046 system.Comment: 2 pages, 1 figure, 1 table with RV data (available only in the Astro-PH version of the paper), Accepted by RNAA

    Uranotaenia unguiculata Edwards, 1913 are attracted to sound, feed on amphibians, and are infected with multiple viruses

    Get PDF
    Abstract Background Uranotaenia unguiculata Edwards, 1913 is a species of mosquito (Diptera: Culicidae) native to central Europe. Recently a novel lineage of the West Nile virus (WNV-lineage 4c) was identified in pools of adult female Ur. unguiculata. To increase the body of knowledge about this species, various trapping methods were evaluated to determine the most efficient method for capturing adult female Ur. unguiculata. Results Sound traps collected equivalent numbers of female Ur. unguiculata as low-hanging light-baited downdraft traps. Hosts were identified as Pelophylax lessonae and P. ridibunda (Anura: Ranidae) species group frogs from the blood found in engorged females. In addition to confirming infection by WNV-lin. 4c, a potentially integrated flavivirus sequence was detected in male mosquitoes. A novel Alphamesonivirus 1 (Nidovirales: Mesoniviridae) was found to be widespread in the Ur. unguiculata population and is herein described. Conclusions Efficient collection methods for Ur. unguiculata for arbovirus surveillance reflect mosquito questing behavior. Uranotaenia unguiculata targets frog species which call from the water, and it is likely that the novel WNV-lin. 4c is maintained in a frog-mosquito transmission cycle. The improved trapping methods listed here will assist future studies of the vector status of Ur. unguiculata for WNV and other arboviruses

    Ground-based detection of an extended helium atmosphere in the Saturn-mass exoplanet WASP-69b

    Get PDF
    Hot gas giant exoplanets can lose part of their atmosphere due to strong stellar irradiation, affecting their physical and chemical evolution. Studies of atmospheric escape from exoplanets have mostly relied on space-based observations of the hydrogen Lyman-{\alpha} line in the far ultraviolet which is strongly affected by interstellar absorption. Using ground-based high-resolution spectroscopy we detect excess absorption in the helium triplet at 1083 nm during the transit of the Saturn-mass exoplanet WASP-69b, at a signal-to-noise ratio of 18. We measure line blue shifts of several km/s and post transit absorption, which we interpret as the escape of part of the atmosphere trailing behind the planet in comet-like form. [Additional notes by authors: Furthermore, we provide upper limits for helium signals in the atmospheres of the exoplanets HD 209458b, KELT-9b, and GJ 436b. We investigate the host stars of all planets with detected helium signals and those of the three planets we derive upper limits for. In each case we calculate the X-ray and extreme ultraviolet flux received by these planets. We find that helium is detected in the atmospheres of planets (orbiting the more active stars and) receiving the larger amount of irradiation from their host stars.]Comment: Submitted to Science on 14 March 2018; Accepted by Science on 16 November 2018; Published by Science on 6 December 2018. This is the author's version of the work. It is posted here by permission of the AAAS for personal use. The definitive version was published in Science, on 6 December 2018 - Report: pages 21 (preprint), 4 figures - Supplementary materials: 22 pages, 10 figures, 3 table

    Species richness in dry grassland patches of eastern Austria: A multi-taxon study on the role of local, landscape and habitat quality variables

    Get PDF
    AbstractAccording to island biogeography theory, the species richness of patches is determined by their size and spatial isolation, while in conservation practice, it is patch quality that determines protection and guides management. We analysed whether size, isolation or habitat quality are most important for the species richness in a set of 50 dry grassland fragments in agricultural landscapes of eastern Austria. We studied two plant taxa (vascular plants, bryophytes) and 11 invertebrate taxa (gastropods, spiders, springtails, grasshoppers, true bugs, leafhoppers and planthoppers, ground beetles, rove beetles, butterflies and burnets, ants and wild bees). The species richness of three categories was analysed: (1) dry grassland specialist species, (2) all grassland species and (3) all species. We used regression and hierarchical partitioning techniques to determine the relationship between species richness and environmental variables describing patch size and shape, patch quality, landscape configuration and landscape quality. The area-isolation paradigm was only applicable for dry grassland specialists, which comprised 12% of all species. Richness of all grassland species was determined mostly by landscape heterogeneity parameters. Total species richness was highly influenced by spillover from adjacent biotopes, and was significantly determined by the percentage of arable land bordering the patches. When analysing all taxa together, species richness of dry grassland specialists was significantly related to historical patch size but not to current patch size, indicating an extinction debt. At the landscape scale, the variable ‘short-grass area’ was a better predictor than the less specific variable ‘area of extensively used landscape elements’. ‘Distance to mainland’ was a good predictor for specialists of mobile animal taxa. Plant specialists showed a pronounced dependence on quality measures at the patch scale and at the landscape scale, whereas animal specialists were influenced by patch size, patch quality, landscape quality and isolation measures. None of the taxa benefited from linear structures in the surroundings. In conclusion, high patch quality and a network of high-quality areas in the surrounding landscape should be the best conservation strategy to ensure conservation of dry grassland specialists. This goal does not conflict with the specific demands of single taxa

    Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice

    Get PDF
    Background: FTY720, an immunomodulator derived from a fungal metabolite which reduces circulating lymphocyte counts by increasing the homing of lymphocytes to the lymph nodes has recently gained interest in stroke research. The aim of this study was to evaluate the protective efficacy of FTY720 in cerebral ischemia in two different application paradigms and to gather first data on the effect of FTY720 on the rate of spontaneous bacterial infections in experimental stroke. Methods: Middle cerebral artery occlusion (MCAO) in C57BL/6 mice (strain J, groups of 10 animals) was performed with two different durations of ischemia (90 min and 3 h) and FTY720 was applied 2 h after vessel occlusion to study the impact of reperfusion on the protective potency of FTY720. Lesion size was determined by TTC staining. Mice treated with FTY720 or vehicle were sacrificed 48 h after 90 min MCAO to determine the bacterial burden in lung and blood. Results: FTY720 1 mg/kg significantly reduced ischemic lesion size when administered 2 h after the onset of MCAO for 3 h (45.4 +/- 22.7 mm3 vs. 84.7 +/- 23.6 mm3 in control mice, p = 0.001) and also when administered after reperfusion, 2 h after the onset of MCAO for 90 min (31.1 +/- 28.49 mm3 vs. 69.6 +/- 27.2 mm3 in control mice, p = 0.013). Bacterial burden of lung homogenates 48 h after stroke did not increase in the group treated with the immunomodulator FTY720 while there was no spontaneous bacteremia 48 h after MCAO in treated and untreated animals. Conclusions: Our results corroborate the experimental evidence of the protective effect of FTY720 seen in different rodent stroke models. Interestingly, we found no increase in bacterial lung infections even though FTY720 strongly reduces the number of circulating leukocytes
    • 

    corecore