108,303 research outputs found

    Determination of intercontinental baselines and Earth orientation using VLBI

    Get PDF
    A series of experiments was conducted during the last decade to explore the capability of very long baseline interferometry (VLBI) to measure the crustal and rotational motions of the Earth with accuracies at the centimeter level. The observing stations are those of NASA's Deep Space Network in California, Spain and Australia. A multiparameter fit to the observed values of delay and delay rate yields radio source positions, polar motion, universal time, the precession constant, baseline vectors, and solid Earth tides. Source positions are obtained with formal errors of the order of 0''.01. UT1-UTC and polar motion are determined at 49 epochs, with formal error estimates for the more recent data of 0.5 msec for UT1-UTC and 2 to 6 mas for polar motion. Intercontinental baseline lengths are determined with formal errors of 5 to 10 cm. The Love numbers and Earth tide phase lag agree with the commonly accepted values

    Shock wave induced vaporization of porous solids

    Get PDF
    Strong shock waves generated by hypervelocity impact can induce vaporization in solid materials. To pursue knowledge of the chemical species in the shock-induced vapors, one needs to design experiments that will drive the system to such thermodynamic states that sufficient vapor can be generated for investigation. It is common to use porous media to reach high entropy, vaporized states in impact experiments. We extended calculations by Ahrens [J. Appl. Phys. 43, 2443 (1972)] and Ahrens and O'Keefe [The Moon 4, 214 (1972)] to higher distentions (up to five) and improved their method with a different impedance match calculation scheme and augmented their model with recent thermodynamic and Hugoniot data of metals, minerals, and polymers. Although we reconfirmed the competing effects reported in the previous studies: (1) increase of entropy production and (2) decrease of impedance match, when impacting materials with increasing distentions, our calculations did not exhibit optimal entropy-generating distention. For different materials, very different impact velocities are needed to initiate vaporization. For aluminum at distention (m)<2.2, a minimum impact velocity of 2.7 km/s is required using tungsten projectile. For ionic solids such as NaCl at distention <2.2, 2.5 km/s is needed. For carbonate and sulfate minerals, the minimum impact velocities are much lower, ranging from less than 1 to 1.5 km/s

    Jet shoes

    Get PDF
    Jet shoes for space locomotio

    VLBI measurements of radio source positions at the Jet Propulsion Laboratory

    Get PDF
    The results of approximately 1300 observations of 67 radio sources are presented. Most of the measurements were made at the stations of the Deep Space Network in California, Spain, and Australia at wavelengths of 13.1 and 3.6 cm, between 1971 and 1978. The formal errors in the derived source positions are generally in the neighborhood of 0.01 seconds of arc and the positions agree fairly well with those previously published

    Energy Density-Flux Correlations in an Unusual Quantum State and in the Vacuum

    Full text link
    In this paper we consider the question of the degree to which negative and positive energy are intertwined. We examine in more detail a previously studied quantum state of the massless minimally coupled scalar field, which we call a ``Helfer state''. This is a state in which the energy density can be made arbitrarily negative over an arbitrarily large region of space, but only at one instant in time. In the Helfer state, the negative energy density is accompanied by rapidly time-varying energy fluxes. It is the latter feature which allows the quantum inequalities, bounds which restrict the magnitude and duration of negative energy, to hold for this class of states. An observer who initially passes through the negative energy region will quickly encounter fluxes of positive energy which subsequently enter the region. We examine in detail the correlation between the energy density and flux in the Helfer state in terms of their expectation values. We then study the correlation function between energy density and flux in the Minkowski vacuum state, for a massless minimally coupled scalar field in both two and four dimensions. In this latter analysis we examine correlation functions rather than expectation values. Remarkably, we see qualitatively similar behavior to that in the Helfer state. More specifically, an initial negative energy vacuum fluctuation in some region of space is correlated with a subsequent flux fluctuation of positive energy into the region. We speculate that the mechanism which ensures that the quantum inequalities hold in the Helfer state, as well as in other quantum states associated with negative energy, is, at least in some sense, already ``encoded'' in the fluctuations of the vacuum.Comment: 21 pages, 7 figures; published version with typos corrected and one added referenc

    Crescent Singularities in Crumpled Sheets

    Full text link
    We examine the crescent singularity of a developable cone in a setting similar to that studied by Cerda et al [Nature 401, 46 (1999)]. Stretching is localized in a core region near the pushing tip and bending dominates the outer region. Two types of stresses in the outer region are identified and shown to scale differently with the distance to the tip. Energies of the d-cone are estimated and the conditions for the scaling of core region size R_c are discussed. Tests of the pushing force equation and direct geometrical measurements provide numerical evidence that core size scales as R_c ~ h^{1/3} R^{2/3}, where h is the thickness of sheet and R is the supporting container radius, in agreement with the proposition of Cerda et al. We give arguments that this observed scaling law should not represent the asymptotic behavior. Other properties are also studied and tested numerically, consistent with our analysis.Comment: 13 pages with 8 figures, revtex. To appear in PR

    KPP reaction-diffusion equations with a non-linear loss inside a cylinder

    Full text link
    We consider in this paper a reaction-diffusion system in presence of a flow and under a KPP hypothesis. While the case of a single-equation has been extensively studied since the pioneering Kolmogorov-Petrovski-Piskunov paper, the study of the corresponding system with a Lewis number not equal to 1 is still quite open. Here, we will prove some results about the existence of travelling fronts and generalized travelling fronts solutions of such a system with the presence of a non-linear spacedependent loss term inside the domain. In particular, we will point out the existence of a minimal speed, above which any real value is an admissible speed. We will also give some spreading results for initial conditions decaying exponentially at infinity

    Atom lithography using MRI-type feature placement

    Get PDF
    We demonstrate the use of frequency-encoded light masks in neutral atom lithography. We demonstrate that multiple features can be patterned across a monotonic potential gradient. Features as narrow as 0.9 microns are fabricated on silicon substrates with a metastable argon beam. Internal state manipulation with such a mask enables continuously adjustable feature positions and feature densities not limited by the optical wavelength, unlike previous light masks.Comment: 4 pages, 4 figure
    • …
    corecore