3,028 research outputs found
Environmental Volunteering: Motivations, Modes and Outcomes
Volunteers play a key role in natural resource management: their commitment, time and labour constitute a major contribution towards managing environments in Australia and throughout the world. From the point of view of environmental managers much interest has focussed on defining tasks suitable to volunteers. However, we argue that an improved understanding of what motivates volunteers is required to sustain volunteer commitments to environmental management in the long term. This is particularly important given that multiple government programs rely heavily on volunteers in Australia, a phenomenon also noted in the UK, Canada, and the USA. Whilst there is considerable research on volunteering in other sectors (e.g. health), there has been relatively little attention paid to understanding environmental volunteering. Drawing on the literature from other sectors and environmental volunteering where available, we present a set of six broad motivations underpinning environmental volunteers and five different modes that environmental volunteering is manifested. We developed and refined the sets of motivations and modes through a pilot study involving interviews with volunteers and their coordinators from environmental groups in Sydney and the Bass Coast. The pilot study data emphasise the importance of promoting community education as a major focus of environmental volunteer groups and demonstrate concerns over the fine line between supporting and abusing volunteers given their role in delivering environmental outcomes.environment, volunteering, motivation, Natural Resource Management (NRM)
Warfare in the Fourth Dimension-ls the Navy Ready for it?
Most dictionaries define the fourth dimcnsmn as time, however, some military writings refer to a fourth dimension of military endeavor beyond the three traditional ones of sea, air and land. That dimension is the electromagnetic spectrum. The two concepts rnay, at first glance appear to have little in common with each other but, in fact, they are closely related. The battle for the electromagnetic spectrum is, in many respects, a battle for time
Cell-Cell Death Communication by Signals Passing Through Non-Aqueous Environments: A Reply
The effects of the emission of low intensity light from cells and organelles, known as biophotons, or ultraweak photon emission, are not well understood and subject to debate. Potapovich & Kostyuk recently proposed that the induction of oxidative stress generates non-chemical death signals which can induce cell death in neighbouring, chemically isolated cells (termed detector cells). Given the significance of these results, here we attempt to replicate their findings. We found treatment of “inductor cells” with duroquinone dissolved in ethanol does indeed induce significant cell death in neighbouring “detector” cells relative to distant control cells (64.53% ± 14.42 vs 99.72% ± 6.09 cell viability), closely reproducing their original results. However, this was no longer true if the induction drug was dissolved in a less volatile solvent, suggesting that their original findings may have been a result of volatile solvent-based transmission as opposed to light-based non-chemical signalling
Non-chemical Signalling Between Mitochondria
A wide variety of studies have reported some form of non-chemical or non-aqueous communication between physically isolated organisms, eliciting changes in cellular proliferation, morphology, and/or metabolism. The sources and mechanisms of such signalling pathways are still unknown, but have been postulated to involve vibration, volatile transmission, or light through the phenomenon of ultraweak photon emission. Here, we report non-chemical communication between isolated mitochondria from MCF7 (cancer) and MCF10A (non-cancer) cell lines. We found that mitochondria in one cuvette stressed by an electron transport chain inhibitor, antimycin, alters the respiration of mitochondria in an adjacent, but chemically and physically separate cuvette, significantly decreasing the rate of oxygen consumption compared to a control (p = <0.0001 in MCF7 and MCF10A mitochondria). Moreover, the changes in O2-consumption were dependent on the origin of mitochondria (cancer vs non-cancer) as well as the presence of "ambient" light. Our results support the existence of non-chemical signalling between isolated mitochondria. The experimental design suggests that the non-chemical communication is light-based, although further work is needed to fully elucidate its nature
Cannabidiol modulates mitochondrial redox and dynamics in MCF7 cancer cells: a study using fluorescence lifetime imaging microscopy of NAD(P)H
The cannabinoid, cannabidiol (CBD), is part of the plant's natural defence system that when given to animals has many useful medicinal properties, including activity against cancer cells, modulation of the immune system, and efficacy in epilepsy. Although there is no consensus on its precise mode of action as it affects many cellular targets, CBD does appear to influence mitochondrial function. This would suggest that there is a cross-kingdom ability to modulate stress resistance systems that enhance homeostasis. As NAD(P)H autofluorescence can be used as both a metabolic sensor and mitochondrial imaging modality, we assessed the potential of this technique to study the in vitro effects of CBD using 2-photon excitation and fluorescence lifetime imaging microscopy (2P-FLIM) of NAD(P)H against more traditional markers of mitochondrial morphology and cellular stress in MCF7 breast cancer cells. 2P-FLIM analysis revealed that the addition of CBD induced a dose-dependent decrease in bound NAD(P)H, with 20 µM treatments significantly decreasing the contribution of bound NAD(P)H by 14.6% relative to control (p<0.001). CBD also increased mitochondrial concentrations of reactive oxygen species (ROS) (160 ± 53 vs. 97.6 ± 4.8%, 20 µM CBD vs. control, respectively, p<0.001) and Ca2+ (187 ± 78 vs. 105 ± 10%, 20 µM CBD vs. control, respectively, p<0.001); this was associated with significantly decreased mitochondrial branch length and increased fission. These are all suggestive of mitochondrial stress. Our results support the use of NAD(P)H autofluorescence as an investigative tool and provide further evidence that CBD can modulate mitochondrial function and morphology in a dose dependent manner, with clear evidence of it inducing oxidative stress at higher concentrations. This continues to support emerging data in the literature and may provide further insight into its overall mode of action, not only in cancer, but potentially its function in the plant and why it can act as a medicine
The fast transient sky with Gaia
The ESA Gaia satellite scans the whole sky with a temporal sampling ranging
from seconds and hours to months. Each time a source passes within the Gaia
field of view, it moves over 10 CCDs in 45 s and a lightcurve with 4.5 s
sampling (the crossing time per CCD) is registered. Given that the 4.5 s
sampling represents a virtually unexplored parameter space in optical time
domain astronomy, this data set potentially provides a unique opportunity to
open up the fast transient sky. We present a method to start mining the wealth
of information in the per CCD Gaia data. We perform extensive data filtering to
eliminate known on-board and data processing artefacts, and present a
statistical method to identify sources that show transient brightness
variations on ~2 hours timescales. We illustrate that by using the Gaia
photometric CCD measurements, we can detect transient brightness variations
down to an amplitude of 0.3 mag on timescales ranging from 15 seconds to
several hours. We search an area of ~23.5 square degrees on the sky, and find
four strong candidate fast transients. Two candidates are tentatively
classified as flares on M-dwarf stars, while one is probably a flare on a giant
star and one potentially a flare on a solar type star. These classifications
are based on archival data and the timescales involved. We argue that the
method presented here can be added to the existing Gaia Science Alerts
infrastructure for the near real-time public dissemination of fast transient
events.Comment: 10 pages, 5 figures and 5 tables; MNRAS in pres
Testing asteroseismology with Gaia DR2: Hierarchical models of the Red Clump
Asteroseismology provides fundamental stellar parameters independent of
distance, but subject to systematics under calibration. Gaia DR2 has provided
parallaxes for a billion stars, which are offset by a parallax zero-point. Red
Clump (RC) stars have a narrow spread in luminosity, thus functioning as
standard candles to calibrate these systematics. This work measures how the
magnitude and spread of the RC in the Kepler field are affected by changes to
temperature and scaling relations for seismology, and changes to the parallax
zero-point for Gaia. We use a sample of 5576 RC stars classified through
asteroseismology. We apply hierarchical Bayesian latent variable models,
finding the population level properties of the RC with seismology, and use
those as priors on Gaia parallaxes to find the parallax zero-point offset. We
then find the position of the RC using published values for the zero-point. We
find a seismic temperature insensitive spread of the RC of ~0.03 mag in the
2MASS K band and a larger and slightly temperature-dependent spread of ~0.13
mag in the Gaia G band. This intrinsic dispersion in the K band provides a
distance precision of ~1% for RC stars. Using Gaia data alone, we find a mean
zero-point of -41 10 as. This offset yields RC absolute magnitudes
of -1.634 0.018 in K and 0.546 0.016 in G. Obtaining these same
values through seismology would require a global temperature shift of ~-70 K,
which is compatible with known systematics in spectroscopy.Comment: Accepted for publication in MNRA
Acetate induces growth arrest in colon cancer cells through modulation of mitochondrial function
Acetate is one of the main short chain fatty acids produced in the colon when fermentable carbohydrates are digested. It has been shown to affect normal metabolism, modulating mitochondrial function and fatty acid oxidation. Currently, there is no clear consensus regarding the effects of acetate on tumorigenesis and cancer metabolism. Here, we investigate the metabolic effects of acetate on colon cancer. HT29 and HCT116 colon cancer cell lines were treated with acetate and its effect on mitochondrial proliferation, reactive oxygen species, density, permeability transition pore, cellular bioenergetics, gene expression of acetyl-CoA synthetase 1 (ACSS1) and 2 (ACSS2) and lipid levels were investigated. Acetate was found to reduce proliferation of both cell lines under normoxia as well as reducing glycolysis; it was also found to increase both oxygen consumption and ROS levels. Cell death observed was independent of ACSS1/2 expression. Under hypoxic conditions, reduced proliferation was maintained in the HT29 cell line but no longer observed in the HCT116 cell line. ACSS2 expression together with cellular lipid levels was increased in both cell lines under hypoxia which may partly protect cells from the anti-proliferative effects of reversed Warburg effect caused by acetate. The findings from this study suggest that effect of acetate on proliferation is a consequence of its impact on mitochondrial metabolism and during normoxia is independent of ACCS1/2 expression
- …