94,225 research outputs found

    Some implications of sampling choices on comparisons between satellite and model aerosol optical depth fields

    Get PDF
    The comparison of satellite and model aerosol optical depth (AOD) fields provides useful information on the strengths and weaknesses of both. However, the sampling of satellite and models is very different and some subjective decisions about data selection and aggregation must be made in order to perform such comparisons. This work examines some implications of these decisions, using GlobAerosol AOD retrievals at 550 nm from Advanced Along-Track Scanning Radiometer (AATSR) measurements, and aerosol fields from the GEOS-Chem chemistry transport model. It is recommended to sample the model only where the satellite flies over on a particular day; neglecting this can cause regional differences in model AOD of up to 0.1 on monthly and annual timescales. The comparison is observed to depend strongly upon thresholds for sparsity of satellite retrievals in the model grid cells. Requiring at least 25% coverage of the model grid cell by satellite data decreases the observed difference between the two by approximately half over land. The impact over ocean is smaller. In both model and satellite datasets, there is an anticorrelation between the proportion <i>p</i> of a model grid cell covered by satellite retrievals and the AOD. This is attributed to small <i>p</i> typically occuring due to high cloud cover and lower AODs being found in large clear-sky regions. Daily median AATSR AODs were found to be closer to GEOS-Chem AODs than daily means (with the root mean squared difference being approximately 0.05 smaller). This is due to the decreased sensitivity of medians to outliers such as cloud-contaminated retrievals, or aerosol point sources not included in the model

    Rapid, quantitative determination of bacteria in water

    Get PDF
    A bioluminescent assay for ATP in water borne bacteria is made by adding nitric acid to a water sample with concentrated bacteria to rupture the bacterial cells. The sample is diluted with sterile, deionized water, then mixed with a luciferase-luciferin mixture and the resulting light output of the bioluminescent reaction is measured and correlated with bacteria present. A standard and a blank also are presented so that the light output can be correlated to bacteria in the sample and system noise can be substracted from the readings. A chemiluminescent assay for iron porphyrins in water borne bacteria is made by adding luminol reagent to a water sample with concentrated bacteria and measuring the resulting light output of the chemiluminescent reaction

    Relationship between resistivity and specific heat in a canonical non-magnetic heavy fermion alloy system: UPt_5-xAu_x

    Full text link
    UPt_(5-x)Au_x alloys form in a single crystal structure, cubic AuBe_5-type, over a wide range of concentrations from x = 0 to at least x = 2.5. All investigated alloys, with an exception for x = 2.5, were non-magnetic. Their electronic specific heat coefficient γ\gamma varies from about 60 (x = 2) to about 700 mJ/mol K^2 (x = 1). The electrical resistivity for all alloys has a Fermi-liquid-like temperature variation, \rho = \rho_o + AT^2, in the limit of T -> 0 K. The coefficient A is strongly enhanced in the heavy-fermion regime in comparison with normal and transition metals. It changes from about 0.01 (x = 0) to over 2 micro-ohm cm/K^2 (x = 1). A/\gamma^2, which has been postulated to have a universal value for heavy-fermions, varies from about 10^-6 (x = 0, 0.5) to 10^-5 micro-ohm cm (mol K/mJ)^2 (x > 1.1), thus from a value typical of transition metals to that found for some other heavy-fermion metals. This ratio is unaffected, or only weakly affected, by chemical or crystallographic disorder. It correlates with the paramagnetic Curie-Weiss temperature of the high temperature magnetic susceptibility.Comment: 5 pages, 5 eps figures, RevTe

    Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies

    Get PDF
    Dynamical models for 17 Coma early-type galaxies are presented. The galaxy sample consists of flattened, rotating as well as non-rotating early-types including cD and S0 galaxies with luminosities between M=-18.79 and M=-22.56. Kinematical long-slit observations cover at least the major and minor axis and extend to 1-4 effective radii. Axisymmetric Schwarzschild models are used to derive stellar mass-to-light ratios and dark halo parameters. In every galaxy models with a dark matter halo match the data better than models without. The statistical significance is over 95 percent for 8 galaxies, around 90 percent for 5 galaxies and for four galaxies it is not significant. For the highly significant cases systematic deviations between observed and modelled kinematics are clearly seen; for the remaining galaxies differences are more statistical in nature. Best-fit models contain 10-50 percent dark matter inside the half-light radius. The central dark matter density is at least one order of magnitude lower than the luminous mass density. The central phase-space density of dark matter is often orders of magnitude lower than in the luminous component, especially when the halo core radius is large. The orbital system of the stars along the major-axis is slightly dominated by radial motions. Some galaxies show tangential anisotropy along the minor-axis, which is correlated with the minor-axis Gauss-Hermite coefficient H4. Changing the balance between data-fit and regularisation constraints does not change the reconstructed mass structure significantly. Model anisotropies tend to strengthen if the weight on regularisation is reduced, but the general property of a galaxy to be radially or tangentially anisotropic, respectively, does not change. (abridged)Comment: 31 pages, 34 figures; accepted for publication in MNRA

    Is the Sun Lighter than the Earth? Isotopic CO in the Photosphere, Viewed through the Lens of 3D Spectrum Synthesis

    Full text link
    We consider the formation of solar infrared (2-6 micron) rovibrational bands of carbon monoxide (CO) in CO5BOLD 3D convection models, with the aim to refine abundances of the heavy isotopes of carbon (13C) and oxygen (18O,17O), to compare with direct capture measurements of solar wind light ions by the Genesis Discovery Mission. We find that previous, mainly 1D, analyses were systematically biased toward lower isotopic ratios (e.g., R23= 12C/13C), suggesting an isotopically "heavy" Sun contrary to accepted fractionation processes thought to have operated in the primitive solar nebula. The new 3D ratios for 13C and 18O are: R23= 91.4 +/- 1.3 (Rsun= 89.2); and R68= 511 +/- 10 (Rsun= 499), where the uncertainties are 1 sigma and "optimistic." We also obtained R67= 2738 +/- 118 (Rsun= 2632), but we caution that the observed 12C17O features are extremely weak. The new solar ratios for the oxygen isotopes fall between the terrestrial values and those reported by Genesis (R68= 530, R6= 2798), although including both within 2 sigma error flags, and go in the direction favoring recent theories for the oxygen isotope composition of Ca-Al inclusions (CAI) in primitive meteorites. While not a major focus of this work, we derive an oxygen abundance of 603 +/- 9 ppm (relative to hydrogen; 8.78 on the logarithmic H= 12 scale). That the Sun likely is lighter than the Earth, isotopically speaking, removes the necessity to invoke exotic fractionation processes during the early construction of the inner solar system

    Spatially resolved spectroscopy of Coma cluster early-type galaxies IV. Completing the dataset

    Get PDF
    The long-slit spectra obtained along the minor axis, offset major axis and diagonal axis are presented for 12 E and S0 galaxies of the Coma cluster drawn from a magnitude-limited sample studied before. The rotation curves, velocity dispersion profiles and the H_3 and H_4 coefficients of the Hermite decomposition of the line of sight velocity distribution are derived. The radial profiles of the Hbeta, Mg, and Fe line strength indices are measured too. In addition, the surface photometry of the central regions of a subsample of 4 galaxies recently obtained with Hubble Space Telescope is presented. The data will be used to construct dynamical models of the galaxies and study their stellar populations.Comment: 40 pages, 7 figures, 6 tables. Accepted for publication in ApJ

    Teleprinter uses thermal printing technique

    Get PDF
    Alphameric/facsimile printer receives serial digital data in the form of a specified number of bits per group and prints it on thermally sensitive paper. A solid state shift-register memorizes the incoming serial digital data

    Scaling in a continuous time model for biological aging

    Full text link
    In this paper we consider a generalization to the asexual version of the Penna model for biological aging, where we take a continuous time limit. The genotype associated to each individual is an interval of real numbers over which Dirac δ\delta--functions are defined, representing genetically programmed diseases to be switched on at defined ages of the individual life. We discuss two different continuous limits for the evolution equation and two different mutation protocols, to be implemented during reproduction. Exact stationary solutions are obtained and scaling properties are discussed.Comment: 10 pages, 6 figure
    corecore