23,835 research outputs found
Solid-state recoverable fuse functions as circuit breaker
Molded, conductive-epoxy recoverable fuse protects electronic circuits during overload conditions, and then permits them to continue to function immediately after the overload condition is removed. It has low resistance at ambient temperature, and high resistance at an elevated temperature
An experimental investigation of a fully cavitating two-dimensional flat plate hydrofoil near a free surface
An experimental program was conducted to investigate the characteristics of a fully cavitating two-dimensional flat plate hydrofoil in the presence of a free surface. The submergence of the hydrofoil was varied from the planing condition at the free surface to a depth corresponding to 2.16 model chords. Near the surface the cavities formed by venting to the atmosphere, but at the deeper submergences, they had to be artificially formed by supplying them with air.
The normal force, the moment about the leading edge, the center of pressure location, the cavity length, and the volumetric air flow rate into the cavity are presented as functions of angle of attack, cavitation number, Froude number, and proximity to the free surface
Mecidea longula Stål (Heteroptera: Pentatomidae: Pentatominae: Mecideini) is established in south Florida
A Caribbean species of Mecidea Dallas, M. longula Stål, apparently established in south Florida, is reported from the United States for the first time. Specimens were first collected in February 2008 in a light trap operated in Miami-Dade County, Florida. Collections in that trap have continued through the present. Searches near the trap location resulted in several specimens being taken from smutgrass, Sporobolus indicus (L.), an exotic grass now established throughout much of the southeastern United States. The three North American species of Mecidea are keyed and illustrated. In addition to the Florida locality, M. longula is reported for the first time from the British Virgin Islands, St. Kitts, St. Martin, and the Turks and Caicos Islands
Ignition and combustion in a laminar mixing zone
The analytic investigation of laminar combustion processes which are essentially two- or three-dimensional present some mathematical difficulties. There are, however, several examples of two-dimensional flame propagation which involve transverse velocities that are small in comparison with that in the principal direction of flow. Such examples occur in thc problem of flame quenching by a cool surface, flame stabilization on a heated flat plate, combustion in laminar mixing zones, etc. In these cases the problem may be simplified by employing what is known in fluid mechanics as the boundary-layer approximation, since it was applied first by Prandtl in his treatment of the viscous flow over a flat plate. Physically it consists in recognizing that if the transverse velocity is small, the variations of flow properties along the direction of main flow are small in comparison with those in a direction normal to the main flow. The analytic description of the problem simplifies accordingly. The present analysis considers the ignition and combustion in the laminar mixing zone between two parallel moving gas streams. One stream consists of a cool combustible mixture, the second is hot combustion products. The two streams come into contact at a given point and a laminar mixing process follows in which the velocity distribution is modified by viscosity, and the temperature and composition distributions by conduction, diffusion, and chemical reaction. The decomposition of the combustible stream is assumed to follow first-order reaction kinetics with temperature dependence according to the Arrhenius law. For a given initial velocity, composition, and temperature distribution, the questions to be answered are: (1) Does the combustible material ignite; and (2) how far downstream of the initial contact point does the flame appear and what is the detailed process of development. Since the hot stream is of infinite extent, it is found that ignition always takes place at some point of the stream. However, when the temperature of the hot stream drops below a certain value, the distance required for ignition increases so enormously that it essentially does not occur in a physical apparatus of finite dimension. The complete development of the laminar flame front is computed using an approximation similar to the integral technique introduced by von Kármán into boundary layer theory
Finite element modeling of electromagnetic fields and waves using NASTRAN
The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios
Toxic Power: What the Toxics Release Inventory Tells Us About Power Plant Pollution
Examines nationwide and state electric utility data to show the quantity and nature of toxic pollutants reported by power plants, and describes the potential health damage they can cause. Suggests ways for reducing toxic power plant pollution
- …