3,647 research outputs found
Quantum critical behavior of the superfluid-Mott glass transition
We investigate the zero-temperature superfluid to insulator transitions in a
diluted two-dimensional quantum rotor model with particle-hole symmetry. We map
the Hamiltonian onto a classical -dimensional XY model with columnar
disorder which we analyze by means of large-scale Monte Carlo simulations. For
dilutions below the lattice percolation threshold, the system undergoes a
generic superfluid-Mott glass transition. In contrast to other quantum phase
transitions in disordered systems, its critical behavior is of conventional
power-law type with universal (dilution-independent) critical exponents
, , , , and
. These values agree with and improve upon earlier Monte-Carlo
results [Phys. Rev. Lett. 92, 015703 (2004)] while (partially) excluding other
findings in the literature. As a further test of universality, we also consider
a soft-spin version of the classical Hamiltonian. In addition, we study the
percolation quantum phase transition across the lattice percolation threshold;
its critical behavior is governed by the lattice percolation exponents in
agreement with recent theoretical predictions. We relate our results to a
general classification of phase transitions in disordered systems, and we
briefly discuss experiments.Comment: 10 pages, 12 figures, final version as publishe
An integrated deep learning and object-based image analysis approach for mapping debris- covered glaciers
Evaluating glacial change and the subsequent water stores in high mountains is becoming increasingly necessary, and in order to do this, models need reliable and consistent glacier data. These often come from global inventories, usually constructed from multi-temporal satellite imagery. However, there are limitations to these datasets. While clean ice can be mapped relatively easily using spectral band ratios, mapping debris-covered ice is more difficult due to the spectral similarity of supraglacial debris to the surrounding terrain. Therefore, analysts often employ manual delineation, a time-consuming and subjective approach to map debris-covered ice extents. Given the increasing prevalence of supraglacial debris in high mountain regions, such as High Mountain Asia, a systematic, objective approach is needed. The current study presents an approach for mapping debris-covered glaciers that integrates a convolutional neural network and object-based image analysis into one seamless classification workflow, applied to freely available and globally applicable Sentinel-2 multispectral, Landsat-8 thermal, Sentinel-1 interferometric coherence, and geomorphometric datasets. The approach is applied to three different domains in the Central Himalayan and the Karakoram ranges of High Mountain Asia that exhibit varying climatic regimes, topographies and debris-covered glacier characteristics. We evaluate the performance of the approach by comparison with a manually delineated glacier inventory, achieving F-score classification accuracies of 89.2%–93.7%. We also tested the performance of this approach on declassified panchromatic 1970 Corona KH-4B satellite imagery in the Manaslu region of Nepal, yielding accuracies of up to 88.4%. We find our approach to be robust, transferable to other regions, and accurate over regional (>4,000 km2) scales. Integrating object-based image analysis with deep-learning within a single workflow overcomes shortcomings associated with convolutional neural network classifications and permits a more flexible and robust approach for mapping debris-covered glaciers. The novel automated processing of panchromatic historical imagery, such as Corona KH-4B, opens the possibility of exploiting a wealth of multi-temporal data to understand past glacier changes.publishedVersio
Quantum Critical Behavior of the Superfluid-Mott Glass Transition
We investigate the zero-temperature superfluid to insulator transitions in a diluted two-dimensional quantum rotor model with particle-hole symmetry. We map the Hamiltonian onto a classical (2+1)-dimensional XY model with columnar disorder which we analyze by means of large-scale Monte Carlo simulations. For dilutions below the lattice percolation threshold, the system undergoes a generic superfluid-Mott glass transition. In contrast to other quantum phase transitions in disordered systems, its critical behavior is of conventional power-law type with universal (dilution-independent) critical exponents z=1.52(3), ν =1.16(5), ß/ν =0.48(2), γ/ν=2.52(4), and η = -0.52(4). These values agree with and improve upon earlier Monte Carlo results [Phys. Rev. Lett. 92, 015703 (2004)] while (partially) excluding other findings in the literature. As a further test of universality, we also consider a soft-spin version of the classical Hamiltonian. In addition, we study the percolation quantum phase transition across the lattice percolation threshold; its critical behavior is governed by the lattice percolation exponents in agreement with recent theoretical predictions. We relate our results to a general classification of phase transitions in disordered systems, and we briefly discuss experiments
Isolation of Mycoplasma from the Genital Tracts of Elephants
The authors report finding arthritogenic agents, mycoplasmas, for the first time in a large group of captive elephants that are frequently crippled with rheumatism
Tax evasion and exchange equity: a reference-dependent approach
The standard portfolio model of tax evasion with a public good produces the perverse conclusion that when taxpayers perceive the public good to be under-/overprovided, an increase in the tax rate increases/decreases evasion. The author treats taxpayers as thinking in terms of gains and losses relative to an endogenous reference level, which reflects perceived exchange equity between the value of taxes paid and the value of public goods supplied. With these alternative behavioral assumptions, the author overturns the aforementioned result in a direction consistent with the empirical evidence. The author also finds a role for relative income in determining individual responses to a change in the marginal rate of tax
The density of states of chaotic Andreev billiards
Quantum cavities or dots have markedly different properties depending on
whether their classical counterparts are chaotic or not. Connecting a
superconductor to such a cavity leads to notable proximity effects,
particularly the appearance, predicted by random matrix theory, of a hard gap
in the excitation spectrum of quantum chaotic systems. Andreev billiards are
interesting examples of such structures built with superconductors connected to
a ballistic normal metal billiard since each time an electron hits the
superconducting part it is retroreflected as a hole (and vice-versa). Using a
semiclassical framework for systems with chaotic dynamics, we show how this
reflection, along with the interference due to subtle correlations between the
classical paths of electrons and holes inside the system, are ultimately
responsible for the gap formation. The treatment can be extended to include the
effects of a symmetry breaking magnetic field in the normal part of the
billiard or an Andreev billiard connected to two phase shifted superconductors.
Therefore we are able to see how these effects can remold and eventually
suppress the gap. Furthermore the semiclassical framework is able to cover the
effect of a finite Ehrenfest time which also causes the gap to shrink. However
for intermediate values this leads to the appearance of a second hard gap - a
clear signature of the Ehrenfest time.Comment: Refereed version. 23 pages, 19 figure
Human Respiratory Syncytial Virus Memphis 37 Causes Acute Respiratory Disease in Perinatal Lamb Lung
Respiratory syncytial virus (RSV) is the leading cause of hospitalization due to respiratory illness among infants and young children of industrialized countries. There is a lack of understanding of the severe disease mechanisms as well as limited treatment options, none of which are fully satisfactory. This is partly due to lack of a relevant animal model of perinatal RSV infection that mimics moderate to severe disease in infants. We and others have shown mild disease in perinatal lambs with either a bovine or a human A2 strain of RSV. The Memphis 37 clinical strain of human RSV has been used to produce mild to moderate upper respiratory disease in healthy adult volunteers. We hypothesized that the Memphis 37 strain of RSV would infect perinatal lambs and produce clinical disease similar to that in human infants. Perinatal (3- to 5-day-old) lambs were inoculated intranasally with 2 mL/nostril of 1×105 focus-forming units (FFU)/mL (n=2) or 2.1×108 FFU/mL (n=3) of RSV Memphis 37. Clinical signs, gross and histological lesions, and immune and inflammatory responses were assessed. Memphis 37 caused moderate to severe gross and histologic lesions along with increased mRNA expression of macrophage inflammatory protein. Clinically, four of the five infected lambs had a mild to severe increase in expiratory effort. Intranasally administered RSV strain Memphis 37 infects neonatal lambs with gross, histologic, and immune responses similar to those observed in human infants
Roundtable on Epistemic Democracy and its Critics
On September 3, 2015, the Political Epistemology/Ideas, Knowledge, and Politics section of the American Political Science Association sponsored a roundtable on epistemic democracy as part of the APSA’s annual meetings. Chairing the roundtable was Daniel Viehoff, Department of Philosophy, University of Sheffield. The other participants were Jack Knight, Department of Political Science and the Law School, Duke University; Hélène Landemore, Department of Political Science, Yale University; and Nadia Urbinati, Department of Political Science, Columbia University. We thank the participants for permission to republish their remarks, which they edited for clarity after the fact
- …