7,337 research outputs found

    Liquid jet eruption from hollow relaxation

    Full text link
    A cavity hollowed out on a free liquid surface is relaxing, forming an intense liquid jet. Using a model experiment where a short air pulse sculpts an initial large crater, we depict the different stages in the gravitational cavity collapse and in the jet formation. Prior eversion, all cavity profiles are found to exhibit a shape similarity. Following hollow relaxation, a universal scaling law establishing an unexpected relation between the jet eruption velocity, the initial cavity geometry and the liquid viscosity is evidenced experimentally. On further analysing the jet forms we demonstrate that the stretched liquid jet also presents shape similarity. Considering that the jet shape is a signature of the initial flow focusing, we elaborate a simple model capturing the key features of the erupting jet velocity scaling

    On the density of sets of the Euclidean plane avoiding distance 1

    Full text link
    A subset AR2A \subset \mathbb R^2 is said to avoid distance 11 if: x,yA,xy21.\forall x,y \in A, \left\| x-y \right\|_2 \neq 1. In this paper we study the number m1(R2)m_1(\mathbb R^2) which is the supremum of the upper densities of measurable sets avoiding distance 1 in the Euclidean plane. Intuitively, m1(R2)m_1(\mathbb R^2) represents the highest proportion of the plane that can be filled by a set avoiding distance 1. This parameter is related to the fractional chromatic number χf(R2)\chi_f(\mathbb R^2) of the plane. We establish that m1(R2)0.25646m_1(\mathbb R^2) \leq 0.25646 and χf(R2)3.8992\chi_f(\mathbb R^2) \geq 3.8992.Comment: 11 pages, 5 figure

    Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS

    Get PDF
    This article presents a finite element reduced order model for the nonlinear vibrations of piezoelectric layered beams with application to NEMS. In this model, the geometrical nonlinearities are taken into account through a von Kármán nonlinear strain–displacement relationship. The originality of the finite element electromechanical formulation is that the system electrical state is fully described by only a couple of variables per piezoelectric patches, namely the electric charge contained in the electrodes and the voltage between the electrodes. Due to the geometrical nonlinearity, the piezoelectric actuation introduces an original parametric excitation term in the equilibrium equation. The reduced-order formulation of the discretized problem is obtained by expanding the mechanical displacement unknown vector onto the short-circuit eigenmode basis. A particular attention is paid to the computation of the unknown nonlinear stiffness coefficients of the reduced-order model. Due to the particular form of the von Kármán nonlinearities, these coefficients are computed exactly, once for a given geometry, by prescribing relevant nodal displacements in nonlinear static solutions settings. Finally, the low-order model is computed with an original purely harmonic-based continuation method. Our numerical tool is then validated by computing the nonlinear vibrations of a mechanically excited homogeneous beam supported at both ends referenced in the literature. The more difficult case of the nonlinear oscillations of a layered nanobridge piezoelectrically actuated is also studied. Interesting vibratory phenomena such as parametric amplification or patch length dependence of the frequency output response are highlighted in order to help in the design of these nanodevices.This research is part of the NEMSPIEZO project, under funds from the French National Research Agency (Project ANR-08-NAN O-015-04), for which the authors are grateful

    On the physics of fizzing: How bubble bursting controls droplets ejection

    Full text link
    Bubbles at a free surface surface usually burst in ejecting myriads of droplets. Focusing on the bubble bursting jet, prelude for these aerosols, we propose a simple scaling for the jet velocity and we unravel experimentally the intricate roles of bubble shape, capillary waves, gravity and liquid properties. We demonstrate that droplets ejection unexpectedly changes with liquid properties. In particular, using damping action of viscosity, self-similar collapse can be sheltered from capillary ripples and continue closer to the singular limit, therefore producing faster and smaller droplets.These results pave the road to the control of the bursting bubble aerosols

    On the density of sets avoiding parallelohedron distance 1

    Get PDF
    The maximal density of a measurable subset of R^n avoiding Euclidean distance1 is unknown except in the trivial case of dimension 1. In this paper, we consider thecase of a distance associated to a polytope that tiles space, where it is likely that the setsavoiding distance 1 are of maximal density 2^-n, as conjectured by Bachoc and Robins. We prove that this is true for n = 2, and for the Vorono\"i regions of the lattices An, n >= 2

    On homotopies with triple points of classical knots

    Full text link
    We consider a knot homotopy as a cylinder in 4-space. An ordinary triple point pp of the cylinder is called {\em coherent} if all three branches intersect at pp pairwise with the same index. A {\em triple unknotting} of a classical knot KK is a homotopy which connects KK with the trivial knot and which has as singularities only coherent triple points. We give a new formula for the first Vassiliev invariant v2(K)v_2(K) by using triple unknottings. As a corollary we obtain a very simple proof of the fact that passing a coherent triple point always changes the knot type. As another corollary we show that there are triple unknottings which are not homotopic as triple unknottings even if we allow more complicated singularities to appear in the homotopy of the homotopy.Comment: 10 pages, 13 figures, bugs in figures correcte

    Incremental complexity of a bi-objective hypergraph transversal problem

    Get PDF
    The hypergraph transversal problem has been intensively studied, from both a theoretical and a practical point of view. In particular , its incremental complexity is known to be quasi-polynomial in general and polynomial for bounded hypergraphs. Recent applications in computational biology however require to solve a generalization of this problem, that we call bi-objective transversal problem. The instance is in this case composed of a pair of hypergraphs (A, B), and the aim is to find minimal sets which hit all the hyperedges of A while intersecting a minimal set of hyperedges of B. In this paper, we formalize this problem, link it to a problem on monotone boolean \land -- \lor formulae of depth 3 and study its incremental complexity

    Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique

    Full text link
    IIn this paper we demonstrate a new scheme for Raman transitions which realize a symmetric momentum-space splitting of 4k4 \hbar k, deflecting the atomic wave-packets into the same internal state. Combining the advantages of Raman and Bragg diffraction, we achieve a three pulse state labelled interferometer, intrinsically insensitive to the main systematics and applicable to all kind of atomic sources. This splitting scheme can be extended to 4Nk4N \hbar k momentum transfer by a multipulse sequence and is implemented on a 8k8 \hbar k interferometer. We demonstrate the area enhancement by measuring inertial forces
    corecore