15 research outputs found

    General features of experiments on the dynamics of laser-driven electron–positron beams

    Get PDF
    The experimental study of the dynamics of neutral electron–positron beams is an emerging area of research, enabled by the recent results on the generation of this exotic state of matter in the laboratory. Electron–positron beams and plasmas are believed to play a major role in the dynamics of extreme astrophysical objects such as supermassive black holes and pulsars. For instance, they are believed to be the main constituents of a large number of astrophysical jets, and they have been proposed to significantly contribute to the emission of gamma-ray bursts and their afterglow. However, despite extensive numerical modelling and indirect astrophysical observations, a detailed experimental characterisation of the dynamics of these objects is still at its infancy. Here, we will report on some of the general features of experiments studying the dynamics of electron–positron beams in a fully laser-driven setup

    Laser Wakefield accelerator modelling with variational neural networks

    Get PDF
    A machine learning model was created to predict the electron spectrum generated by a GeVclass laser wakefield accelerator. The model was constructed from variational convolutional neural networks which mapped the results of secondary laser and plasma diagnostics to the generated electron spectrum. An ensemble of trained networks was used to predict the electron spectrum and to provide an estimation of the uncertainty on that prediction. It is anticipated that this approach will be useful for inferring the electron spectrum prior undergoing any process which can alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam properties due to stochastic fluctuations in the laser energy and plasma electron density

    Generation of electron high energy beams with a ring-like structure by a dual stage laser wakefield accelerator

    Get PDF
    The laser wake-field accelerator (LWFA) traditionally produces high brightness, quasi-monoenergetic electron beams with Gaussian-like spatial and angular distributions. In the present work we investigate the generation of ultra-relativistic beams with ring-like structures in the blowout regime of the LWFA using a dual stage accelerator. A density down-ramp triggers injection after the first stage and is used to produce ring-like electron spectra in the 300 – 600 MeV energy range. These well defined, annular beams are observed simultaneously with the on-axis, high energy electron beams, with a divergence of a few milliradians. The rings have quasi-monoenergetic energy spectra with an RMS spread estimated to be less than 5%. Particle-in-cell simulations confirm that off-axis injection provides the electrons with the initial transverse momentum necessary to undertake distinct betatron oscillations within the plasma bubble during their acceleration process

    High-repetition rate relativistic electron beam generation from intense laser solid interactions

    No full text
    Relativistic electron beams have applications spanning materials science, medicine, and home- land security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high ux sources of relativistic electrons- which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma with the lambda cubed laser system at the University of Michigan (a 5 × 1018W=cm2, 500 Hz, Ti:Sapphire laser), we have measured electrons ejected from the surface of fused silica nd Cu targets having energies in excess of an MeV. The spectrum of these electrons was measured with respect to incident laser angle, prepulse timing, and focusing conditions. While taken at a high repetition rate, the pulse energy of the lambda cubed system was consistently on the order of 10 mJ. In order to predict scaling of the electron energy with laser pulse energy, simulations are underway which compare the spectrum generated with the lambda cubed system to the predicted spectrum generated on the petawatt scale HERCULES laser system at the University of Michigan. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Angular streaking of betatron X-rays in a transverse density gradient laser-wakefield accelerator

    No full text
    In a plasma with a transverse density gradient, laser wavefront tilt develops gradually due to phase velocity differences in different plasma densities. The wavefront tilt leads to a parabolic trajectory of the plasma wakefield and hence the accelerated electron beam, which leads to an angular streaking of the emitted betatron radiation. In this way, the temporal evolution of the betatron X-ray spectra will be converted into angular "streak," i.e., having a critical energy-angle correlation. An analytical model for the curved trajectory of a laser pulse in a transverse density gradient is presented. This gives the deflection angle of the electron beam and the betatron X-rays as a function of the plasma and laser parameters, and it was verified by particle-in-cell simulations. This angular streaking could be used as a single-shot diagnostic technique to reveal the temporal evolution of betatron X-ray spectra and hence the electron acceleration itself. © 2018 Author(s)

    Measurements of electron beam ring structures from laser wakefield accelerators

    No full text
    Laser-plasma interaction experiments using a 70 TW short-pulse laser were conducted to investigate the properties of electron beams produced from laser wakefield acceleration. In addition to narrow divergence electron beams in excess of 200 MeV, lower energy components of the electron beam were observed to have an annular emission pattern with much larger divergence. This ring-shaped component of the beam is up to several MeV in energy and gives rise to a corresponding increase in the divergence of bremsstrahlung x-rays while producing more background radiation. Scaling measurements of the emission angle of the beam with respect to plasma density were also made. From 3D numerical simulations of the interaction, it is shown that this phenomenon results from energetic electrons in the laser-driven wakefield which are not trapped by the plasma wave, but which can still obtain some longitudinal momentum from the interaction

    Plasma-based particle sources

    No full text
    High-brightness particle beams generated by advanced accelerator concepts have the potential to become an essential part of future accelerator technology. In particular, high-gradient accelerators can generate and rapidly accelerate particle beams to relativistic energies. The rapid acceleration and strong confining fields can minimize irreversible detrimental effects to the beam brightness that occur at low beam energies, such as emittance growth or pulse elongation caused by space charge forces. Due to the high accelerating gradients, these novel accelerators are also significantly more compact than conventional technology. Advanced accelerators can be extremely variable and are capable of generating particle beams with vastly different properties using the same driver and setup with only modest changes to the interaction parameters. So far, efforts have mainly been focused on the generation of electron beams, but there are concepts to extend the sources to generate spin-polarized electron beams or positron beams.The beam parameters of these particle sources are largely determined by the injection and subsequent acceleration processes. Although, over the last decade there has been significant progress, the sources are still lacking a sufficiently high 6-dimensional (D) phase-space density that includes small transverse emittance, small energy spread and high charge, and operation at high repetition rate. This is required for future particle colliders with a sufficiently high luminosity or for more near-term applications, such as enabling the operation of free-electron lasers (FELs) in the X-ray regime. Major research and development efforts are required to address these limitations in order to realize these approaches for a front-end injector for a future collider or next-generation light sources. In particular, this includes methods to control and manipulate the phase-space and spin degrees-of-freedom of ultrashort plasma-based electron bunches with high accuracy, and methods that increase efficiency and repetition rate. These efforts also include the development of high-resolution diagnostics, such as full 6D phase-space measurements, beam polarimetry and high-fidelity simulation tools.A further increase in beam luminosity can be achieve through emittance damping. Emittance cooling via the emission of synchrotron radiation using current technology requires kilometer-scale damping rings. For future colliders, the damping rings might be replaced by a substantially more compact plasma-based approach. Here, plasma wigglers with significantly stronger magnetic fields are used instead of permanent-magnet based wigglers to achieve similar damping performance but over a two orders of magnitude reduced length

    Visualization of plasma bubble accelerators using Frequency-Domain Shadowgraphy:ICHED 2009 - 2nd International Conference on High Energy Density Physics

    No full text
    We report on generation of relativistic electron beams in the wake of a relativistically intense laser pulse traversing a 1.7 mm long atmospheric density helium gas jet. The plasma wake structure is recovered using a Frequency-Domain Holography (FDH) and Frequency-Domain Shadowgraphy (FDS). As the gas density changes, the accelerated electron beams show variations in cross-section area, divergence, total charge, and peak energy. FDH phase reconstruction shows discontinuities and large phase jumps due to plasma electrons blown out by the pump pulse, probe pulse refraction, and nonlinear propagation in plasma. However, FDS amplitude reconstruction shows bright spots that yield information about bubble formation and evolution
    corecore