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A machine learning model was created to predict the electron spectrum generated by a GeV-
class laser wakefield accelerator. The model was constructed from variational convolutional neural
networks which mapped the results of secondary laser and plasma diagnostics to the generated
electron spectrum. An ensemble of trained networks was used to predict the electron spectrum
and to provide an estimation of the uncertainty on that prediction. It is anticipated that this
approach will be useful for inferring the electron spectrum prior undergoing any process which can
alter or destroy the beam. In addition, the model provides insight into the scaling of electron beam
properties due to stochastic fluctuations in the laser energy and plasma electron density.

INTRODUCTION

Laser wakefield accelerators (LWFAs) generate multi-
GeV electron beams from cm-scale plasma channels using
~ 100 TW laser pulses [1-6]. The extreme acceleration
gradients of LWFA, coupled with their relative accessibil-
ity, has led to widespread research and pursuit of several
applications, such as compact light sources [7—10], gen-
eration of bright v-ray [11] and ultra-relativistic positron
beams [12], and for future particle colliders [13]. Also, the
combination of GeV electron beams and high intensity
laser pulses allows for the study of fundamental physics
such as strong-field quantum electrodynamics [14-17].

In LWFA the non-linear laser pulse evolution [18, 19]
and its effect on the injection and acceleration processes
[20-23] are highly sensitive to initial conditions and can
lead to significant shot-to-shot variation of the electron
beam properties [24, 25]. Recent work on high-stability
laser systems and plasma sources has demonstrated im-
proved stability, with the observation of few-percent vari-
ation in electron beam energy and charge over 24-hours
of continuous operation [26]. Long-term high-repetition
rate operation has opened up the possibility of using ma-
chine learning techniques to model the sources of electron
beam variation and to use closed-loop algorithms to op-
timise performance [26-31].

For applications such as the study of radiation re-
action, knowledge of the pre-interaction electron beam
properties are required to make precise measurements of
any changes of these properties and thereby infer the va-
lidity of theoretical models [32-34]. The destructive na-
ture of the measurements necessitates predictable LWFA
performance through either: improved stability; preserv-

ing part of the spectrum as a reference [33]; or by de-
veloping models capable of producing the electron beam
properties from a given shot. In general, the ability to
make predictions of the outputs from plasma accelerators
will be advantageous to many of their applications.

Previous work in developing machine learning models
for LWFAs has demonstrated prediction of scalar metrics
of the electron beam, such as total charge or peak energy
[29-31, 35]. However, many applications will require the
prediction of vector properties, such as the spectrum or
the longitudinal phase space, for which neural networks
provide a convenient framework. A densely connected
neural network (DNN) is made of densely connected lay-
ers, in which every input is the weighted sum of all of
the outputs of the previous layer, with the individual
weights as free parameters of the model. A non-linear
activation function then (e.g. a sigmoid function) takes
the weighted sum plus a bias value (another free model
parameters) as its argument and returns an output value.
An alternative to deeply connected layers is a convolu-
tional layer, which performs convolutions between the in-
put vector and a set of kernels. Networks using these lay-
ers, known as convolutional neural networks (CNN) have
been shown to be better suited to learning meaningful
features from natural signals [36]. Further improvement
to the predictive power of neural networks has been seen
when including stochasticity in the outputs of individ-
ual nodes, in an architecture known as variational neural

networks (VNN) [37].

In conventional accelerators, Emma et al. [38] demon-
strated training of a DNN to produce synthetic diagnos-
tic outputs that matched the measured outputs for a new
unseen dataset. CNNs have been used to predict x-ray
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properties from the post-undulator electron beam spec-
trum [39], while ensembles of DNNs have also been used
to predict the electron beam longitudinal phase space
and current profile from non-destructive bending radia-
tion measurements[40]. In this work, we report on the
training of an ensemble of VNNs to model the LWFA-
generated electron spectrum using secondary diagnostics
of the laser and plasma conditions. The LWFA ensem-
ble was trained using a subset of experimental measure-
ments of the electron spectrum with the remainder used
for model validation. Each individual VNN in the en-
semble was trained with a different subset of the training
data, so that the ensemble provided both a mean predic-
tion and an estimate of its uncertainty. The model also
reveals the extent to which the measurements obtained
from the available diagnostics are predictive of the ac-
celerator performance, and which parameters have the
strongest influence.

EXPERIMENTAL METHODS AND RESULTS
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FIG. 1. An illustration of the experimental setup (not to
scale). The primary laser focus was aligned to the front edge
of a supersonic gas jet emitted from a 15 mm diameter noz-
zle positioned 10 mm below the laser pulse propagation axis.
The input laser energy, was measured by integrating the sig-
nal on a near-field camera before the compressor, which was
cross calibrated with an energy meter and adjusted for the
60% compressor throughput. The scattered laser signal was
observed from above by an optical camera, and the plasma
channel electron density profile was measured using interfer-
ometry with a transverse short-pulse probe laser. The small
(< 0.1%) transmission of the focusing laser pulse through a
dielectric mirror was directed onto a CCD camera to obtain
an on-shot far-field image. Electron beams from the LWFA
were deflected by a magnetic dipole onto two lanex screens
(only the first is shown here) which were used to determine
the electron spectrum in the range of 0.3 < F < 2.5 GeV.

The experiment was performed using the Gemini laser
system at the Central Laser Facility in the UK, (see
figure 1 for details). Laser pulses with an energy of
Er, = (6.6 £0.5)J and a pulse duration of ~ 50fs were
used to drive a GeV-scale LWFA. The pulses were fo-
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cused with an f/40 off-axis parabolic mirror to a spot
size of (50 £ 2) x (45 £ 2) um in the horizontal (polar-
isation) and vertical planes respectively, giving a peak
intensity of (5.5 &+ 0.5) x 10'® Wem™2. The focus was
aligned to a gas jet which was composed of a mixture of
2% nitrogen and 98% helium, enabling ionisation injec-
tion [41-44]. The gas jet had an average electron density
of (1.00 £ 0.07) x 10*® cm™3 over a 17 mm length.

The LWFA generated electron energy spectrum
dW/dE was measured using the spectrometer scintillator
screen images, which were energy-calibrated by numeri-
cal tracking of electron trajectories in the magnetic field.
The interferometry and top view cameras were used to
extract the electron density profile, n.(z) and the laser
scatter profile, Sy (z), respectively, where z is the laser
propagation axis. A 2D Gaussian fit was performed on
the far-field image to obtain six parameters: the peak
fluence Iy; the centroids x¢ and yo; the major and minor
RMS spot widths o, and oy; and the angle of the major
axis of the ellipse with z axis 6. Due to the aberrations
and clips caused by this beam-line, this far-field is not an
exact replica of the main laser focus, but is representative
of the shot-to-shot focal spot fluctuations.

The experimental results for this analysis were taken
from an investigation of radiation reaction, in which a
second counter-propagating laser pulse used to collide
with the LWFA electron beam. For training and val-
idating our predictive tool, we wish to only use shots
where the laser pulse did not significantly overlap with
the electron beam, so that the electron spectrum was
not affected. For successful collisions, a gamma-beam
was generated via the inverse Compton scattering inter-
action and was diagnosed spatially with a Csl scintillator
array [16] imaged onto a 1024 x 1024 pixel CCD.

Due to the shot-to-shot variation in the electron beam
position, most shots did not result in a significant col-
lision, providing a large number of null shots for model
training and testing. The brightness of the signal on
the gamma detector was used to provide an approximate
metric of the collision intensity. The 99.99" percentile
pixel value of the background subtracted CCD image was
taken as the peak of the the gamma signal C,,. The
highest value of this metric was C, = 4380, whereas the
median value was C, = 12. From analysis of the col-
lision statistics, a value of C,, < 100 was estimated to
result from collision with a peak normalised vector po-
tential of ag < 1.4. For 1 GeV electrons, this would result
in a < 1% energy loss [14], approximately equal to the
resolution of the spectrometer. Therefore, this value was
taken as a threshold for null shots, for which the electron
beam is unaffected by the collision. The experimental
data was taken during a 5-hour period with a total of
779 shots. Model training and validation datasets were
taken from shots for which C, < 100, with 90% (570
shots) used for training and 10% (75 shots) reserved for
model validation.
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NEURAL NETWORK ARCHITECTURE AND
TRAINING

The measurements of n.(z), Sp(z) and dW/dE were
stored as one-dimensional vectors of lengths 310, 100 and
200 respectively. Although each of these signals are com-
posed of at least a hundred values, the variations over the
full dataset is limited, and so in principle only a few pa-
rameters are required for each to encode these variations.
An appropriate decoder would be able to generate a good
approximation to the measured signals from this reduced
set of parameters, which are called latent space variables.
In this work, variational autoencoders (VAE)[45, 46] in-
corporating convolutional and densely connected layers,
were trained as illustrated in figure 2. By using a bottle-
neck of only a few nodes, the VAEs were trained to find
an optimal latent space representation which of the data
which allowed the decoder to reconstruct the measured
signals.

The trained encoders for n.(z) and Sp(z) were used
to encode their respective measurements to their latent
space representation, which were then combined with
measurements of the laser far-field and the laser energy
to create the inputs for the predictive model. A VNN,
which we call the translator network, takes those inputs
and returns values which are passed to the trained elec-
tron spectra decoder to generate the predicted spectrum.
The translator was trained to the learn the correlation
between the reduced input set and the latent variables of
the electron spectra decoder, as illustrated in figure 3.

For the variational layers, two parameters are calcu-
lated for each node which represent the expectation value
tm and standard deviation o,,. During training, values
were sampled from Gaussian distributions given by these
parameters, N (tm,, 0,), such that the latent values for
a given input set, x,,, would vary according to o,.

The training loss function used was [45],

Lr=Lyuse — BDkL
N
Lo = 3 W(EL) ~ Wa(B) — 6D, (1)

n=0

where D = SM_ (1 +log(om) — 42, — om)/(2M), is
the Kullback-Leibler (KL) divergence and Lj;sg is the
mean squared error (MSE), and M is the total number
of input sets in a given training iteration. The same loss
function was used to train each VAE and also the final
translator VNN, with the MSE taken between the pre-
dicted and measured diagnostic output (ne(z), Sr(z) or
dW/dE). The 8 parameter was used to scale the relative
importance of the regularisation, following the beta-VAE
approach [45]. During model validation, only the mean
weights for the the variational layers were used and the
Dy, term from equation (1) was omitted. Every node of
the neural networks used the leaky rectified linear unit
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(leaky-ReLU)[47] activation function with a = 0.3, which
exhibited superior learning performance in comparison to
sigmoid and hyperbolic tan functions, as well as leaky-
ReLU with other values of «.

For the diagnostic VAEs, the number of latent param-
eters was chosen to be the minimum which give high-
fidelity reconstructions, with the § parameter manually
tuned to ensure that the distribution of each latent pa-
rameter for the training datasets was close to a standard
normal distribution (N(0,1)). One latent space param-
eter was directly set as the average of the input signal
(normalised by the training dataset). This parameter
was then used to scale the decoder output and ensured
that one of the latent space variables represents the am-
plitude of the signal, aiding interpretation of the trained
networks. Once the VAEs were trained, the weights were
frozen during the translator training process.

The translator is a densely connected neural network
with a variational last layer. The translator VNN ar-
chitecture (number of nodes and number of layers) and
the value of § was optimised using a genetic algorithm.
During this process the training data was divided in two,
with 50% of the data used to train each network, and the
other 50% used to calculate the test loss. This ensured
that the validation dataset was kept purely for validation
of the final model performance and not used in any tun-
ing of the predictive model. The optimal architecture for
the translator network, shown in figure 3, is comprised
of three densely connected layers, with a final variational
layer with five outputs.

In order to quantify the uncertainty in the model pre-
dictions, 100 translator VNNs were trained, each using
a randomly selected 50% sample of the training dataset.
The prediction of each of these models can then be used
to obtain an average prediction, while the variation be-
tween model predictions is indicative of the random un-
certainty and the finite size of the training data. In par-
ticular, the random sub-sampling affects the predictive
quality in regions where the training data is sparse, typ-
ically at the extremes of the input parameters, resulting
in a larger uncertainty in those regions.

The parameters for the trained VAEs and translator
networks are summarised in table I. Each autoencoder
was trained for 1000 iterations with a batch size of 64.
The translator network was trained in three stages with
200, 400 and 300 iterations performed at 10, 4 and 1
times the final 8 value to balance reconstruction fidelity
with latent space smoothness [46]. The training processes
were all performed using the Adam optimiser [48], with a
learning rate of 1073, which was found to converge well.

LWFA PREDICTION RESULTS

The measured electron spectra from the validation
dataset are shown in figure 4a, along with the reconstruc-
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FIG. 2. Variational autoencoder (VAE) architecture for determining latent space representation of diagnostics. The type and
dimension of each layer is indicated in the labels. The inset plots show an example laser scatter signal Sy, and the approximation
returned by the VAE. The input (and output) size N; is equal to the data binning of the results for each individual diagnostic.
Max pooling was used at the output of each convolution layer, which combined neighbouring output pairs and returned only
the maximum of each pair. The average signal, in this case (Sr), was passed as an additional latent space parameter for the
encoder and was used the scale the output of the decoder. The autoencoder structure was the same for each diagnostic, except

for the size of the latent space.
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FIG. 3. A diagram of the translator network architecture.

Shown inset is an example measurement from the experimen-
tal data (black), with the mean prediction of the LWFA model
ensemble (red). Also shown are the individual predictions of
each sub-model in blue.

a) meésured'spectré
ey w
Ello_ - - —————y --'—"_]'- 25
0 m
I-I-IO.S-*LI M F-l--*“rl | I‘ i 2.0
b) autoencoder ' ) T>
;‘ [}
81'0_ - ——— S -""!'-1r- 1'52
2 i 5
UJ0.5-I'|-|H—'!rl-lll—-f| I“' 2
. . AR . ' F1.0 =
c) LWFA ensemble
>1.04 _ = " B
i e ey e e =l I
w
0514 &4 pt 84 | |-q' . i
L 11 H I
10 20
Sorted shot |ndex
FIG. 4. a) Measured electron spectra and reproduced elec-

tron spectra using b) the trained variational autoencoder and
¢) the mean prediction of the ensemble of LWFA models. The
individual shots are sorted by cut-off energy, determined as
the highest energy for which the spectra exceed a threshold
value.

~

https://doi.org/10.1017/hpl.2022.47 Published online by Cambridge University Press

Model N; | N B Validation Lyse
Density profile [310[4+1| 2 x 1073 1.7x1073
Scattering profile| 100|541 1073 2.3x 1073
Electron spectra [200(|4+1| 2 x 1073 1.1x107?
LWFA single 18| 5 [*5x107*|(7.34+0.5) x 1072
LWFA ensemble |18 | 5 |*5x 107* 5.7 x 1072

TABLE I. Summary of autoencoder parameters used for each
diagnostic and for the translator model. *For the LWFA
translator models, the value of 8 varied from high to low
during the training, with the final value given in the table.
The training time for each autoencoder was 10 minutes and
training of the 100 translator networks took a total of 3 hours,
using an Intel Xeon Gold 6130 CPU at 2.1 GHz with 32 Gb of
RAM. The analysis and model training was performed on the
CLF Data Analysis as a Service (CDAS) [49]. The neural net-
works were built using the Keras API (https://keras.io).

tions by the electron spectra VAE figure 4b and the av-
erage of the LWFA model ensemble predictions figure 4c.
The electron spectra VAE had an MSE of 0.011, and
shows a good qualitative and quantitative reproduction
of the measured electron spectra. This indicates that
the five parameters of the latent space, in combination
with the structures learnt by the decoder, are sufficient
to accurately generate the set of observations from the
validation dataset. In other words, the five latent pa-
rameters are sufficient to generate the full variability of
electron beams for this experimental setup. The question
is then whether the secondary diagnostics are sufficient
to determine the correct latent variables for each shot
and thereby give an accurate prediction of the electron
spectrum. The mean prediction of the LWFA model en-
semble had an MSE of 0.057 and shows a similar trend
in cutoff energy as the data, except for the few high and
low energy outliers. By comparison, a naive prediction
that all measured spectra are equal to the the average
spectrum from the training dataset gives an MSE value
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FIG. 5. Individual shots selected at equally spaced intervals

of the sorted shot index from figure 4. The measured spec-
tra (black) are shown alongside the predictions of each LWFA
model from the trained ensemble (red) and a individual spec-
trum measurement closest to the median of the training data
(blue). The sorted shot index is shown in the top right of
each panel.

of 0.11, indicating that the LWFA model has a significant
predictive capability.

Individual predictions of each model of the LWFA en-
semble, along with the corresponding measured electron
spectra are shown in figure 5. The variation in model pre-
dictions for a given shot is indicative of the uncertainty,
due to the random sub-sampling of the training data and
the stochastic training process. For a large region of the
parameter space, the LWFA model predictions show a
good agreement with the measurements, with large dis-
crepancies occurring for the outliers in terms of cutoff
energy. These shots also exhibit the largest variation in
predictions between individual models within the ensem-
ble. The total electron beam energy is reasonably accu-
rately predicted with relative RMS error of 12% for the
entire validation dataset, compared to the relative beam
energy RMS variation of 30%.

The relative influence of each input parameter to the
LWFA model can be seen by varying each one in turn and
measuring the effect on the resultant spectra as shown in
figure 6. The plasma density parameters have a relatively
modest effect on the electron spectrum, indicating that
the shot-to-shot variation of the plasma density profile is
not the dominant contributor to the electron spectrum
variation. Variations of the laser energy and the scatter-
ing profile are more significant, having the greatest effect
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on the generated electron spectra. The spatio-temporal
distribution of the laser pulse is only indirectly diagnosed
from the far-field diagnostic and the effect on the scat-
tering profile, and is known to have a large influence on
the accelerated electrons [26, 28, 29]. Including addi-
tional laser diagnostics, such as measurement of the spa-
tial phase profile [26, 30], should enable higher fidelity
predictions.
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FIG. 6. The relative influence of the translator VNN input

parameters on the predicted electron spectra. Each parame-
ter is set to the mean value of the training dataset and then
varied over £3 standard deviations in 11 steps, with the vari-
ation in the spectrum quantified by the average RMS change
to the spectrum. The n'" latent space parameters for the
scattering and density profile encoders are labelled Sz (n) and
ne(n) respectively. Sp(6) and ne(5) are proportional to the
average laser scattering signal and plasma electron density re-
spectively.

Although many of the input parameters are not
straightforward to interpret physically, i.e. those which
are the latent space of the autoencoders, the laser en-
ergy is a physically important parameter in LWFA. In
practice, the inputs for the LWFA models are not in-
dependent of one another, as characterised by calculat-
ing the Pearson correlation coefficients for the training
dataset. This reveals relatively strong correlations be-
tween the laser energy and several other parameters, es-
pecially S1(3), Sr(4), Sr(6), ne(4), ne(5) and Iy which
had correlation coefficients ranging from r = 0.31 to
r = 0.55. The trained LWFA model is then able to show
what effect laser energy fluctuations have on the elec-
tron spectrum by varying each parameter proportionally
according to their correlation coefficients with laser en-
ergy Ep, as shown in figure 7a. As the laser energy in-
creases, the peak electron energy is relatively constant,
while the overall charge increases. The total electron
beam charge @p is plotted as a function of laser en-
ergy in figure 7b, for both the raw data and the LWFA
model predictions. The model prediction shows an ap-
proximately linear increase with laser energy with the
equation Qp[nC|] = 0.48FE[J] — 2.1.

The scaling parameters Sy, (6) and n.(5) are also easy
to interpret, as they the average scattering signal and
electron density respectively (normalised to the mean and
variance over the training data set). The effect of n.(5)
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energy on a) the predicted electron spectra and b) the total
electron beam charge. The data for each shot in the training
data (red) is shown in b), overlaid from the values calculated
from the predicted spectra of the LWFA model (black points)
with a linear fit (black dashed line).

on the electron density profile and the predicted electron
spectrum are shown in figure 8. The average plasma
electron density varied by 4% over the training data set,
as illustrated by the small perturbations to the density
profile observed in figure 8a. A more significant effect is
seen on the electron spectra in figure 8b, with the peak
energy shifting higher as the average density drops, as
expected for a dephasing limited LWFA [50, 51]. The
effect on the spectrum is much smaller than that seen to
be caused by the laser energy variation in figure 7. This
indicates that the level of natural variations of the plasma
electron density in this dataset was sufficiently low that
it was not a dominant contributor to the shot-to-shot
variations in the electron spectra.

The other latent parameters generated by VAEs do not
have straightforward physical interpretations and only
have meaning in combination with the trained encoders.
In order to gain some insight into their physical mean-
ing, the effect of changing each parameter can be ob-
served on the corresponding diagnostic output, as well
as on the predicted electron spectrum. An example is
shown in figure 9, where the effect of varying S.(3), the
most dominant input parameter to the translator VNN,
is shown.

Figure 9a shows that positive Sp,(3) correlates with an
increased laser scattering peak at the entrance to the gas
jet (z = 0) and for the last half of the plasma, while
suppressing the signal for 1 > z > 7mm. This also re-
sults in an increased predicted total charge as well as an
increased predicted maximum electron energy (see fig-
ure 9b, a clearly beneficial effect for many applications.
The scattered laser intensity is associated with Raman
side-scattering and wavebreaking radiation, generated as
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FIG. 9. The effect of changing S1.(3) on a) the laser scatter-
ing profile and b) the predicted electron spectrum. All other
latent space parameters are kept fixed at zero (i.e. their av-
erage values from the training dataset) while Sr(3) is varied
over the range of £3 standard deviations of Sy (3) in the train-
ing dataset.

the laser self-guides and self-compresses to a high peak
intensity in the plasma channel [52, 53]. Therefore, the
increase of this scattering signal seen in figure 9a indi-
cates an increased possibility for the injection of electrons
into the plasma wakefield at z = 0 mm, while maintaining
a high amplitude plasma wave for z > 7mm, resulting in
the enhanced electron spectrum predicted in figure 9b.

CONCLUSION

In conclusion, we have constructed and trained a pre-
dictive model for a laser wakefield accelerator, capable
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of predicting the electron spectrum for a given shot,
based on secondary diagnostics of the laser and plasma
conditions. The model is constructed from separately
trained variational convolutional autoencoders, with a
variational neural network used to map a reduced pa-
rameter set to the latent space of an electron spectra de-
coder. An ensemble of models were trained on sub-sets
of the training data, with the range of model predictions
providing an estimate of the uncertainty. The predictive
model ensemble performs better than the naive assump-
tion that the electron spectrum is constant, and so has
utility in estimating the electron spectrum in the case
of destructive processes, such as radiation reaction. The
model fidelity is most likely limited by the lack of on-shot
spatio-temporal information about the laser pulse, which
is known to have a strong influence on the accelerated
electron beam [26]. It is expected that this technique
can be improved by including additional diagnostics of
the laser spatial and spectral phase, and by increasing
the size of the training dataset, especially for reducing
the prediction error for the outliers. Further diagnos-
tics of the laser-plasma interaction, such as spectrally
resolving the scattering signal, may also provide addi-
tional information to improve the prediction accuracy.
Neural networks of this kind could be an important tool
for understanding the performance sensitivities of plasma
accelerators, and also in providing synthetic diagnostics
for applications of their electron beams and secondary
sources.
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