440 research outputs found

    Remote sensing of phytoplankton community composition in the northern Benguela upwelling system

    Get PDF
    Marine phytoplankton in the northern Benguela upwelling system (nBUS) serve as a food and energy source fuelling marine food webs at higher trophic levels and thereby support a lucrative fisheries industry that sustain local economies in Namibia. Microscopic and chemotaxonomic analyses are among the most commonly used techniques for routine phytoplankton community analysis and monitoring. However, traditional in situ sampling methods have a limited spatiotemporal coverage. Satellite observations far surpass traditional discrete ocean sampling methods in their ability to provide data at broad spatial scales over a range of temporal resolution over decadal time periods. Recognition of phytoplankton ecological and functional differences has compelled advancements in satellite observations over the past decades to go beyond chlorophyll-a (Chl-a) as a proxy for phytoplankton biomass to distinguish phytoplankton taxa from space. In this study, a multispectral remote sensing approach is presented for detection of dominant phytoplankton groups frequently observed in the nBUS. Here, we use a large microscopic dataset of phytoplankton community structure and the Moderate Resolution Imaging Spectroradiometer of aqua satellite match-ups to relate spectral characteristics of in water constituents to dominance of specific phytoplankton groups. The normalised fluorescence line height, red-near infrared as well as the green/green spectral band-ratios were assigned to the dominant phytoplankton groups using statistical thresholds. The ocean colour remote sensing algorithm presented here is the first to identify phytoplankton functional types in the nBUS with far-reaching potential for mapping the phenology of phytoplankton groups on unprecedented spatial and temporal scales towards advanced ecosystem understanding and environmental monitoring

    Prefrontal-Premotor Pathways and Motor Output in Well-Recovered Stroke Patients

    Get PDF
    Structural brain imaging has continuously furthered our knowledge how different pathways of the human motor system contribute to residual motor output in stroke patients. Tract-related microstructure of pathways between primary and premotor areas has been found to critically influence motor output. The motor network is not restricted in connectivity to motor and premotor areas but these brain regions are densely interconnected with prefrontal regions such as the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex. So far, the available data about the topography of such direct pathways and their microstructural properties in humans are sparse. To what extent prefrontal-premotor connections might also relate to residual motor outcome after stroke is still an open question. The present study was designed to address this issue of structural connectivity of prefrontal-premotor pathways in 26 healthy, older participants (66 ± 10 years old, 15 male) and 30 well-recovered chronic stroke patients (64 ± 10 years old, 21 males). Probabilistic tractography was used to reconstruct direct fiber tracts between DLPFC and VLPFC and three premotor areas (dorsal and ventral premotor cortex and the supplementary motor area). Direct connections between DLPFC/VLPFC and the primary motor cortex were also tested. Tract-related microstructure was estimated for each specific tract by means of fractional anisotropy and alternative diffusion metrics. These measures were compared between the groups and related to residual motor outcome in the stroke patients. Direct prefrontal-premotor trajectories were successfully traceable in both groups. Similar in gross anatomic topography, stroke patients presented only marginal microstructural alterations of these tracts, predominantly of the affected hemisphere. However, there was no clear evidence for a significant association between tract-related microstructure of prefrontal-premotor connections and residual motor functions in the present group of well-recovered stroke patients. Direct prefrontal-motor connections between DLPFC/VLPFC and the primary motor cortex could not be reconstructed in the present healthy participants and stroke patients

    Regulatory delays in a multinational clinical stroke trial

    Get PDF
    INTRODUCTION: The initiation and conduct of randomised clinical trials are complicated by multiple barriers, including delays in obtaining regulatory approvals. Quantitative data on the extent of the delays due to national or local review in randomised clinical trials is scarce. MATERIALS AND METHODS: We assessed the times needed to obtain regulatory approval and to initiate a trial site for an academic, EU-funded, phase III, randomised clinical trial of pharmacological prevention of complications in patients with acute stroke in over 80 sites in nine European countries. The primary outcome was the time from the first submission to a regulatory authority to initiation of a trial site. Secondary outcomes included time needed to complete each individual preparatory requirement and the number of patients recruited by each site in the first 6 and 12 months. RESULTS: The median time from the first submission to a regulatory authority to initiation of a trial site was 784 days (IQR: 586–1102). The single most time-consuming step was the conclusion of a clinical trial agreement between the national coordinator and the trial site, which took a median of 194 days (IQR: 93–293). A longer time to site initiation was associated with a lower patient recruitment rate in the first six months after initiation (B = –0.002; p = 0.02). DISCUSSION: CONCLUSION: In this EU-funded clinical trial, approximately 26 months were needed to initiate a trial site for patient recruitment. The conclusion of a contract with a trial site was the most time-consuming activity. To simplify and speed up the process, we suggest that the level of detail of contracts for academic trials should be proportional to the risks and commercial interests of these trials

    Independent external validation of a stroke recurrence score in patients with embolic stroke of undetermined source

    Get PDF
    Abstract Background Embolic stroke of undetermined source (ESUS) accounts for a substantial proportion of ischaemic strokes. A stroke recurrence score has been shown to predict the risk of recurrent stroke in patients with ESUS based on a combination of clinical and imaging features. This study aimed to externally validate the performance of the ESUS recurrence score using data from a randomized controlled trial. Methods The validation dataset consisted of eligible stroke patients with available magnetic resonance imaging (MRI) data enrolled in the PreDAFIS sub-study of the MonDAFIS study. The score was calculated using three variables: age (1 point per decade after 35 years), presence of white matter hyperintensities (2 points), and multiterritorial ischaemic stroke (3 points). Patients were assigned to risk groups as described in the original publication. The model was evaluated using standard discrimination and calibration methods. Results Of the 1054 patients, 241 (22.9%) were classified as ESUS. Owing to insufficient MRI quality, three patients were excluded, leaving 238 patients (median age 65.5 years [IQR 20.75], 39% female) for analysis. Of these, 30 (13%) patients experienced recurrent ischaemic stroke or transient ischemic attack (TIA) during a follow-up period of 383 patient-years, corresponding to an incidence rate of 7.8 per 100 patient-years (95% CI 5.3–11.2). Patients with an ESUS recurrence score value of ≥ 7 had a 2.46 (hazard ratio (HR), 95% CI 1.02–5.93) times higher risk of stroke recurrence than patients with a score of 0–4. The cumulative probability of stroke recurrence in the low-(0–4), intermediate-(5–6), and high-risk group (≥ 7) was 9%, 13%, and 23%, respectively (log-rank test, χ2 = 4.2, p = 0.1). Conclusions This external validation of a published scoring system supports a threshold of ≥ 7 for identifying ESUS patients at high-risk of stroke recurrence. However, further adjustments may be required to improve the model’s performance in independent cohorts. The use of risk scores may be helpful in guiding extended diagnostics and further trials on secondary prevention in patients with ESUS. Trial registration: Clinical Trials, NCT02204267. Registered 30 July 2014, https://clinicaltrials.gov/ct2/show/NCT02204267

    Physical and biological variability in the Antarctic Polar Frontal Zone: report on research cruise 103 of the MV SA Agulhas

    Get PDF
    A detailed hydrographic and biological survey was carried out in the region of the South-west Indian Ridge during April 2002. Hydrographic data revealed that the Andrew Bain Fracture Zone, centred at 30oE, 50oS, functions as an important choke point to the flow of the Antarctic Circumpolar Current, resulting in the convergence of the Antarctic Polar Front (APF) and the southern branch of the Sub-Antarctic Front (SSAF). Total chlorophyll-a concentration and zooplankton biomass were highest at stations occupied in the vicinity of two frontal features represented by the APF and SSAF. These data suggest that the region of the South-west Indian Ridge is an area of elevated biological activity and probably acts as an important offshore feeding area for the top predators on the Prince Edward Islands

    PRECIOUS: PREvention of Complications to Improve OUtcome in elderly patients with acute Stroke: rationale and design of a randomised, open, phase III, clinical trial with blinded outcome assessment

    Get PDF
    Background: Elderly patients are at high risk of complications after stroke, such as infections and fever. The occurrence of these complications has been associated with an increased risk of death or dependency. Hypothesis: Prevention of aspiration, infections, or fever with metoclopramide, ceftriaxone, paracetamol, or any combination of these in the first four days after stroke onset will improve functional outcome at 90 days in elderly patients with acute stroke. Design: International, 3 × 2-factorial, randomised-controlled, open-label clinical trial with blinded outcome assessment (PROBE) in 3800 patients aged 66 years or older with acute ischaemic stroke or intracerebral haemorrhage and an NIHSS score ≥ 6. Patients will be randomly allocated to any combination of oral, rectal, or intravenous metoclopramide (10 mg thrice daily); intravenous ceftriaxone (2000 mg once daily); oral, rectal, or intravenous paracetamol (1000 mg four times daily); or usual care, started within 24 h after symptom onset and continued for four days or until complete recovery or discharge from hospital, if earlier. Outcome: The primary outcome measure is the score on the modified Rankin Scale at 90 days (± 14 days), as analysed with multiple regression. Summary: This trial will provide evidence for a simple, safe and generally available treatment strategy that may reduce the burden of death or disability in patients with stroke at very low costs. Planning: First patient included in May 2016; final follow-up of the last patient by April 202

    Prefrontal-Premotor Pathways and Motor Output in Well-Recovered Stroke Patients

    Get PDF
    Structural brain imaging has continuously furthered our knowledge how different pathways of the human motor system contribute to residual motor output in stroke patients. Tract-related microstructure of pathways between primary and premotor areas has been found to critically influence motor output. The motor network is not restricted in connectivity to motor and premotor areas but these brain regions are densely interconnected with prefrontal regions such as the dorsolateral (DLPFC) and ventrolateral (VLPFC) prefrontal cortex. So far, the available data about the topography of such direct pathways and their microstructural properties in humans are sparse. To what extent prefrontal-premotor connections might also relate to residual motor outcome after stroke is still an open question. The present study was designed to address this issue of structural connectivity of prefrontal-premotor pathways in 26 healthy, older participants (66 ± 10 years old, 15 male) and 30 well-recovered chronic stroke patients (64 ± 10 years old, 21 males). Probabilistic tractography was used to reconstruct direct fiber tracts between DLPFC and VLPFC and three premotor areas (dorsal and ventral premotor cortex and the supplementary motor area). Direct connections between DLPFC/VLPFC and the primary motor cortex were also tested. Tract-related microstructure was estimated for each specific tract by means of fractional anisotropy and alternative diffusion metrics. These measures were compared between the groups and related to residual motor outcome in the stroke patients. Direct prefrontal-premotor trajectories were successfully traceable in both groups. Similar in gross anatomic topography, stroke patients presented only marginal microstructural alterations of these tracts, predominantly of the affected hemisphere. However, there was no clear evidence for a significant association between tract-related microstructure of prefrontal-premotor connections and residual motor functions in the present group of well-recovered stroke patients. Direct prefrontal-motor connections between DLPFC/VLPFC and the primary motor cortex could not be reconstructed in the present healthy participants and stroke patients

    Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome

    Get PDF
    Gilles de la Tourette syndrome (GTS) is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico-striato-thalamo-cortical loops. We therefore applied structural diffusion tensor imaging (DTI) to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS). GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA) with basal ganglia (pre-SMA-putamen, SMA-putamen) and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity
    • …
    corecore