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Remote sensing of
phytoplankton community
composition in the northern
Benguela upwelling system
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Marine phytoplankton in the northern Benguela upwelling system (nBUS) serve

as a food and energy source fuelling marine food webs at higher trophic levels

and thereby support a lucrative fisheries industry that sustain local economies in

Namibia. Microscopic and chemotaxonomic analyses are among the most

commonly used techniques for routine phytoplankton community analysis and

monitoring. However, traditional in situ sampling methods have a limited

spatiotemporal coverage. Satellite observations far surpass traditional discrete

ocean sampling methods in their ability to provide data at broad spatial

scales over a range of temporal resolution over decadal time periods.

Recognition of phytoplankton ecological and functional differences has

compelled advancements in satellite observations over the past decades to

go beyond chlorophyll-a (Chl-a) as a proxy for phytoplankton biomass to

distinguish phytoplankton taxa from space. In this study, a multispectral

remote sensing approach is presented for detection of dominant

phytoplankton groups frequently observed in the nBUS. Here, we use a large

microscopic dataset of phytoplankton community structure and the Moderate

Resolution Imaging Spectroradiometer of aqua satellite match-ups to relate

spectral characteristics of in water constituents to dominance of specific

phytoplankton groups. The normalised fluorescence line height, red-near

infrared as well as the green/green spectral band-ratios were assigned to

the dominant phytoplankton groups using statistical thresholds. The ocean

colour remote sensing algorithm presented here is the first to identify

phytoplankton functional types in the nBUS with far-reaching potential for

mapping the phenology of phytoplankton groups on unprecedented spatial

and temporal scales towards advanced ecosystem understanding and

environmental monitoring.

KEYWORDS

satellite remote sensing, phytoplankton community structure, algorithm development,
northern Benguela, Namibia, MODIS-Aqua
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1 Introduction

The Benguela Upwelling System (BUS), situated on the south

western coast of Africa in the South Eastern Atlantic ocean

(Figure 1A), is estimated to be the most productive Eastern

Boundary Upwelling System (Carr, 2002; Carr and Kearns, 2003;

Chavez and Messié, 2009). It stretches from Cape Agulhas in South

Africa along the Namibian coast to Cape Frio and northwards into

Angolan waters (Hutchings et al., 2009; Kampf and Chapman,

2016). The central perennial Lüderitz upwelling cell positioned at

27.5° S in Namibia (Figure 1A) partitions the BUS into the southern

and northern BUS (Duncombe Rae, 2005; Lett et al., 2007;

Hutchings et al., 2009). The perennial upwelling in the nBUS is

driven by strong equatorward south easterly alongshore winds with

a strong seasonality, tending to peak in late winter to early spring

(August-September) and in autumn (April-May) (Hutchings et al.,

2009; Louw et al., 2016). These winds induce an Ekman transport of

coastal surface waters offshore, forcing the deep, cold and nutrient-

enriched waters to upwell into the euphotic zone where they fuel the

high productivity characteristic of the region in the form of marine

phytoplankton blooms (Shillington et al., 2006; Lass and Mohrholz,

2008; Lachkar and Gruber, 2012). This increase of productivity in

the food web supports a diverse ecosystem and a very lucrative

commercial fisheries industry contributing to both economic

growth and food security (Allison et al., 2009; Stock et al., 2017).

Marine phytoplankton contribute nearly half of the global

primary production and serve as a direct food and energy source

fuelling marine food webs at higher trophic levels (Field et al., 1998;

Kwak and Park, 2020). In addition, phytoplankton blooms play an

important role in global climate regulation through their

contribution to the net annual uptake of atmospheric CO2
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(Arrigo et al., 1999; Caldeira and Duffy, 2000; Tortell et al., 2008;

Pollard et al., 2009) and the production and release of aerosol

particle precursors (e.g. dimethyl sulfide (DMS) gas and volatile

organic carbons (VOCs)) that modulate cloud formation (Charlson

et al., 1987; Stefels, 2000; Lizotte et al., 2017). This is of particular

relevance in the nBUS, which is characterised by the presence of one

of the largest and most persistent stratiform marine cloud decks

that contribute to the variability and long-term trends of global

albedo with impacts on both regional and global climate.

Marine phytoplankton encompass a diverse community

of organisms, whose dominance varies in response to physicochemical

variability in environmental conditions, that subsequently determines

their ecological and biogeochemical function. For instance, diatoms are

typically large cells that grow fast reaching high concentrations and due

to their silica ballast and increased density, tend to sink fast and are

considered very effective exporters of organic carbon to the deep ocean

and important role players in the biological carbon pump (Smetacek,

1999; Brownlee and Taylor, 2002). Coccolithophores on the other hand

are calcifiers that reduce seawater alkalinity and the carbonate

concentration of surface waters in the process that forms their

coccoliths (external calcium carbonate platelets), which impacts the

ocean-atmosphere exchange of CO2 (Brownlee and Taylor, 2002;

Riebesell and Rost, 2004; Mcclelland et al., 2016). Together with

dinoflagellates (Keller, 1989), coccolithophores have the highest

intracellular dimethylsulfoniopropionate (DMSP) content and are

considered prominent climate-active DMS gas producers (Archer

et al., 2001; Lizotte et al., 2017) that may impact cloud formation and

the radiation budget. Cyanobacteria on the other hand fix atmospheric

nitrogen (N2) in a process that contributes to N2 input into the ocean to

compensate for N2 loss from denitrification (Agawin et al., 2007).

Moreover, there are some bloom-forming and toxin-producing
FIGURE 1

Map of western Africa showing the location of the Benguela Upwelling System (blue rectangle, inset). The BUS is partitioned into the northern
(nBUS) and southern (sBUS) region separated by the Lüderitz upwelling cell at 27° S (A). The nBUS is bound by the cold water from the Benguela
current (BC) and the warm water from the Angola current (AC) that converge at the Angola-Benguela frontal zone (A-B frontal zone). The right
panel (B) shows bathymetry and the geolocations of stations sampled in the nBUS for Chl-a and phytoplankton community structure on the RV
Meteor (M153) (green triangles) and Mirabilis RGNO2019 (black open circles). The geolocations of all additional cruise data (Table 1) are similarly
identified with unique symbols as per the figure legend.
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phytoplankton species (e.g. diatoms of Pseudo-nitzschia spp.), commonly

referred to as harmful algal blooms (HABs) that are detrimental to both

humans and aquatic life and have devastating consequences for the

fisheries industry with important economic ramifications (Hoagland

et al., 2002; Dermastia et al., 2022). As such, phytoplankton community

structure and diversity is considered a key component of marine

ecosystems as they have a direct impact on food web energy supply,

fisheries and food security, ecosystem health and climate (Otero et al.,

2020; Bestion et al., 2021). It is therefore crucial to study and understand

phytoplankton community composition and its variability, especially in

the face of global warming and the changing climate. The knowledge of

the phytoplankton community composition and its sensitivity to climate

forcing can provide a valuable understanding of ecological balance in

marine ecosystems (Kruk et al., 2011), which can aid in informed policy

drafting decisions for improved implementation of sustainable fisheries

and environmental management for the protection and conservation

of ecosystems.

Phytoplankton communities are highly dynamic and susceptible

to seasonal (and intra-seasonal), interannual and long term variability

in environmental drivers such as wind driven mixing (Louw et al.,

2016), upwelling (Hansen et al., 2014) and radiative forcing. The

nBUS is reported to have been progressively impacted by longer-term

variability associated with climate change and other human-induced

activities that have resulted in drastic changes to the ecosystem over

the last decades. For example, fish catches and populations (sardines

and anchovy most notably) have dramatically declined over the past

five decades as a result of overfishing and possible environmental

events such as hypoxia and Benguela Niños, that negatively affect

organisms at both lower and higher trophic levels (Cury and

Shannon, 2004). Moreover, upwelling indices indicate a decline in

the frequency of upwelling events in recent years (2009 and 2014) in

the nBUS (Lamont et al., 2018; Polonsky and Serebrennikov, 2020),

with major implications for ocean productivity in support of marine

food webs and the biological carbon pump. Consequently, there is a

necessity for routine monitoring of phytoplankton as key roleplayers

in this unique marine ecosystem for effective management as a

scientific priority towards a better understanding and predictive

ability of their role in maintaining ecosystem balance and climate

feedback. Efforts to acquire long-term datasets towards adequately

monitoring the nBUS for assessment of ecosystem changes have been

made by the National Marine Information and Research Centre

(NatMIRC, Namibia). The monitoring programme involves discrete

in situ field observations collected quasi-monthly along two

longitudinal transects off the coast of Namibia. These data have

been used to assess trends in phytoplankton biomass (Louw et al.,

2016), bloom-forming and toxin-producing diatoms of the genus

Pseudo-nitzschia (Louw et al., 2017) and other environmental

variables for nearly two decades. Field observations, although very

useful in studying and monitoring marine ecosystems, are

nonetheless severely limited in their regional and temporal

coverage. Furthermore, they are labour intensive, costly and unable

to provide near real-time monitoring observations.

Satellite ocean colour remote sensing observations have the

ability to surpass traditional ocean sampling methods, that involve
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discrete samples collected on-board research vessels, owed to their

large spatial and temporal scale resolution and ability to provide

near real time information. Early studies of ocean colour remote

sensing by satellite focused on the computation of global

phytoplankton biomass using chlorophyll-a concentration ([Chl-

a]) as a proxy, which improved our understanding of synoptic scale

ocean primary production and biogeochemistry (O’Reilly et al.,

1998). However, recognition of the importance of different

phytop lankton taxonomic groups and the i r vary ing

biogeochemical functions has compelled the need for the

development of satellite products with the ability to resolve

complex phytoplankton dynamics from space. At the forefront of

this endeavour is the ability to provide information on the

composition of the phytoplankton community (phytoplankton

functional types – PFTs) in which each PFT represents a group of

species aggregated according to distinct functional characteristics

(e.g. size structure or taxonomic composition). More recent

advancements in ocean colour remote sensing have seen the

development of indirect techniques to derive phytoplankton

functional types and size distribution such as the abundance-

based algorithms that are based on [Chl-a] (Vidussi et al., 2001;

Uitz et al., 2006; Hirata et al., 2011; Brewin et al., 2015). Spectral-

based approaches on the other hand are more direct and rely

primarily on the unique characteristics of light absorption and

backscattering of different phytoplankton taxa, which can be

retrieved from water-leaving reflectance. Variations in

photosynthetic pigment composition, morphology, size, shape,

and inner structure of different phytoplankton species is what

drives the characteristics of inherent optical properties of surface

waters that can subsequently be used to differentiate phytoplankton

groups or species from satellite ocean colour remote sensing

(Aguirre-Gomez et al., 2001; Vaillancourt et al., 2004; Soja-

Wozniak et al., 2018). One example of this type of approach is

the dual ratio approach, which utilises the ratio between 2 spectral

bands to identify specific phytoplankton functional types. For

instance, Bernard et al. (2005) used the 665 nm and 709 nm red/

red band-ratio of the Medium Resolution Imaging Spectrometer

(MERIS) sensor to identify HABs in the southern Benguela

upwelling system (sBUS). Another approach uses spectral band

differences to derive phytoplankton optical fingerprints. Typically,

these algorithms are used to identify algal blooms of a particular

taxa using three adjacent spectral bands in the red and near infrared

or blue-green spectral regions that quantify the amplitude of a

specific peak of absorption. One particularly useful example of this

approach utilises the [Chl-a] fluorescence peak signal between 678

and 683 nm. Quantification of this signal, known as the

fluorescence line height (FLH) (Letelier and Abbott, 1996; Kritten

et al., 2020), is based on the height of the reflectance peak above a

baseline formed between the two adjacent wavebands (Letelier and

Abbott, 1996; Kritten et al., 2020). This approach has previously

been applied to identify HABs in the coastal waters of SW Florida

(Hu et al., 2005) and the sBUS (Smith and Bernard, 2020). Past and

current ocean colour satellite sensors with appropriate wavebands

in the red and near infrared (NIR) spectral regions, that are able to
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use these approaches, include the Moderate Resolution Imaging

Spectroradiometer of aqua (MODIS-Aqua) [2002-present], the

Ocean and Land Colour Imager (OLCI) [2016-present], and the

MERIS sensors [2002-2012] (Letelier and Abbott, 1996).

Although there exist a limited number of satellite ocean colour

remote sensing algorithms for aiding in the detection of multiple

phytoplankton functional types (Aiken et al., 2007) and HABs in

the sBUS (Bernard et al., 2005; Smith and Bernard, 2020), there is,

to our knowledge, no satellite ocean colour remote sensing

algorithm for detection of phytoplankton functional groups in the

nBUS counterpart. While the regional abundance-based

phytoplankton size class model of Lamont et al. (2019) for the

BUS provides useful information on the variability of

phytoplankton size functional types (picophytoplankton,

nanophytoplankton and microphytoplankton), it is not able to

approximate functional phytoplankton group composition

(needed for the assessment of their various key ecological

functions). The optical based algorithms derived by Aiken et al.

(2007) and Smith and Bernard (2020) on the other hand are geared

at providing information on the functional composition of

phytoplankton for the sBUS (specifically diatoms, Pseudo-

nitzschia, dinoflagellates, flagellates & mixed communities) and it

cannot be assumed that they are applicable to the nBUS (or to

different satellite products).

This study addresses the need for an ocean colour remote

sensing algorithm for the detection of phytoplankton groups in

the nBUS. It does so by first selecting the most suitable satellite

sensor for the nBUS based on matchups between in situ and satellite

(MODIS-Aqua, MERIS/OLCI) derived [Chl-a]. It subsequently

follows a similar methodological approach to the algorithm

developed for the sBUS by Smith and Bernard (2020) by

identifying the spectral reflectance characteristics unique to

stations dominated by particular phytoplankton functional

groups. A combination of these unique optical characteristics is

then used to derive an algorithm that can be applied to ocean colour

data from the nBUS to elicit broad scale high resolution information

on the likely distribution of the dominant functional types. Such an

algorithm will allow observations of the spatio-temporal

distribution and variability of key phytoplankton groups on an

unprecedented scale in the nBUS, which is a scientific priority for

understanding the marine food web and detecting its response to a

changing climate in this globally important upwelling region.
2 Materials and methods

2.1 In situ data

2.1.1 Expeditions
This study focused on the nBUS off the coast of Namibia

(Figure 1A) within the latitudes and longitudes of 20–26° S and

9–15° E, which included the Cape Frio, Central and the Lüderitz

upwelling cells. Two expeditions were carried out on-board the RV

Meteor (M153) and Mirabilis (RGNO2019) for data collection

(Figure 1B). Cruise M153 took place from 15 February to 15
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March 2019 covering both the northern and southern Benguela

upwelling systems whereas cruise RGNO2019 took place from 9 to

10 of May 2019 covering 2 longitudinal transects (23 and 20° S). The

stations sampled during the two expeditions (41 in total) are

presented in Figure 1B. Seawater samples were collected in

surface waters (0-5 m) using Niskin bottles attached to a

conductivity-temperature-depth (CTD) carousel setup on-board

the RV Meteor and Mirabilis. These data were supplemented with

additional data from previous cruises in the region covering the

period between 2001 and 2020 (Figure 1B; Table 1).

2.1.2 Chlorophyll-a
For the M153 and RGNO2019 cruises total [Chl-a], 200 ml of

seawater was filtered through glass microfiber filters (Whatman GF/

F, 25 mm diameter, 0.7 mm pore size) and stored immediately in the

freezer (-20 ˚C) for later analysis. Total [Chl-a] was determined

following the method of Welschmeyer (1994). Chl-a was extracted

from the GF/F filters by addition of 9 mL of 90% acetone for 24 hr in

the dark at -20 ˚C. These were then transferred into glass tubes and

fluorescence was measured using a Turner (Model 10AU)

fluorometer. The [Chl-a] was determined from a seven-point

[Chl-a] calibration curve and represented as equivalents of

chlorophyll-a (mg l-1).
2.1.3 Phytoplankton cell counts
For the M153 and RGNO2019 cruises phytoplankton cell

enumeration and taxonomic identification, water from the Niskin

bottles was transferred to 200 mL glass amber bottles and

immediately preserved with acidic Lugol iodine solution, shaken

gently and stored in the dark at room temperature for later analysis

in the land-based laboratory. The Lugol-preserved phytoplankton

cells were settled in a 25 ml glass/plastic chamber for 24 hours prior

to analysis. The phytoplankton cells were identified and counted

using a Zeiss Axiovert 200 inverted light microscope following the

Utermöhl (1958) method. Cells were counted and identified to genus

and to species level where possible. Approximately 400 cells were

counted to achieve an estimation of cell concentration with ±10%

precision, whereas at least 50-200 cells were counted when cells

occurred in smaller concentrations with a precision of approximately

15–30% (Anderson and Throndsen, 2004). Although microscopic

taxonomic identification of phytoplankton provides a resolution to

genus and species levels, counted cells in this study were only grouped

into diatoms, flagellates, dinoflagellates, cyanobacteria,

coccolithophores, and others/unknown.
2.1.4 Additional in situ data sources
The M153 and RGNO2019 cruise datasets (detailed above) were

supplemented with additional [Chl-a] and phytoplankton cell count

data from multiple expeditions from publicly available, published

and unpublished sources that were conducted in the nBUS covering

the period between 2001 and 2020 (Table 1), to make a total pool of

252 stations. Data from the additional sources were similarly

obtained from samples collected in the top 5 m and were

similarly assessed for [Chl-a] using a fluorometer according to
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the principle of Welschmeyer (1994) and phytoplankton cell counts

according to the method of Utermöhl (1958). The geolocations of

the additional stations sampled are shown in Figure 1B with the

respective sampling dates and data sources summarised in Table 1.
2.2 Satellite data

2.2.1 Data acquisition and processing
Daily Level-2 (L2) 1 km resolution ocean colour satellite data

from the Moderate Resolution Imaging Spectroradiometer on board

the Aqua satellite (MODIS-Aqua), the Medium Resolution Imaging

Spectrometer (MERIS) on board Envisat, and the Ocean and Land

Colour Instrument (OLCI) on board Sentinel-3 were obtained from

the National Aeronautics and Space Administration (NASA)

OceanColor Web (https://oceancolor.gsfc.nasa.gov/), MERIS

catalogue and inventory (MERCI, http://meris-ds.eo.esa.int/oads/

access/) and the Copernicus online data access website (CODA,

https://coda.eumetsat.int/), respectively. The OLCI [Chl-a] data

were derived from OLCI reflectance bands using the blended

switching algorithm of Smith et al. (2018), which was developed

specifically for the high biomass waters of the southern Benguela.

The standard MODIS-Aqua [Chl-a] product is based on an

empirical relationship derived from remote sensing reflectance

(Rrs) between 440 and 670 nm and in situ [Chl-a]. This product

is a combination of the standard OC3 algorithm (O’Reilly et al.,

2000) and the colour index (CI) algorithm (Hu et al., 2012), where

the OC3 algorithm is applied at [Chl-a] >0.2 mg m−3, whereas the

CI algorithm is applied at [Chl-a]<0.15 mg m−3, and a weighted

blending approach is applied between 0.15 and 0.2 mg m−3.

Other products obtained from MODIS L2 include the L2 flags,

the nFLH and the remote sensing reflectance (Rrs) at 412, 443,

469, 488, 531, 547, 555, 645, 667 and 678 nm wavebands of the

visible spectrum. The normalised fluorescence line height (nFLH,

W m−2 mm−1 sr−1) (Letelier and Abbott, 1996) is a standard

product provided with the MODIS L2 Ocean colour data

derived as follows:
Frontiers in Marine Science 05
nFLH  =Lw678  −Lw667  − (Lw748 −Lw667)*
678−667
748−667

� �� �
 

(1)

where Lw is the normalised water-leaving radiance.

2.2.2 Matchups with in situ data
The L2 data from MODIS-Aqua, MERIS and OLCI were

matched to field observation stations and extracted using a 5 x 5

pixel box centred around the in situ measurements as satellite

navigation may not be accurate to a single pixel. The multi-pixel

box increases the number of pixels of satellite retrievals and the

possibility of a valid in situ matchup. A time window of ≤12 hrs

between the satellite overpass and in situ observations was given

preference as a temporal threshold for coincidence. However, when

coincident satellite and in situ observations weren’t available within

a 12 hr window, this criteria was relaxed to allow matchups to be

considered within a ≤24 hr time window. The mean was then

calculated for valid pixels within the 5 x 5 pixel box for [Chl-a],

nFLH and Rrs at spectral bands in the visible range as outlined

above, together with their respective statistical error metrics (e.g.

standard deviations).
2.3 Data quality control

A set of quality control measures were adopted to minimise the

inclusion and effect of bad/erroneous data from the L2 satellite data

using a set of correctivemeasures as outlined in Figure S1. The L2flags

product contains science and quality “flags”, with set atmospheric

correction thresholds that were used to eliminate invalid pixels.

Briefly, pixels were masked and excluded when flagged as “land”

(pixel is over land), “clouds” (cloud contamination), “chlfail” (satellite

ocean colour [Chl-a] algorithm failure), “higlint” (sunglint detected

via reflectance exceeds threshold), “hisatzen” (sensor view zenith

angle exceeds 60 °), “lowlw” (very low water-leaving radiance), and

“hilt” (observed radiance very high or saturated). In an effort to
TABLE 1 Research expeditions in the northern Benguela upwelling system off Namibia where concurrent [Chl-a] and phytoplankton cell count
samples were collected between 2001 and 2019.

Cruise expedition Date Source

RV Meteor 153 (M153) 15 February – 15 March 2019 This study ab

RV Mirabilis (RGNO2019) 9 – 10 May 2019 This study ab

Maria S. Merian (MSM18-5) 27 August – 15 September 2011 Wasmund et al., 2014 ab

Discovery 356 (D356) 11 September – 07 October 2010 Wasmund, 2011a; Wasmund, 2011b ab

Maria S. Merian (MSM18-4) 16 – 19 August 2011 Wasmund, 2015b; Wasmund, 2015c ab

Maria S. Merian (MSM17/3) 30 January – 02 February 2011 Wasmund, 2012, Wasmund, 2015a ab

RV Mirabilis (MOM survey) January 2004 – February 2020 NatMIRC unpublished monitoring data ab

RV Mirabilis (MOM survey February 2001 – December 2012 Louw et al., 2016 a

RV Welwitschia February 2001 – December 2012 Matlakala, 2019 ab
a = [Chl a] data.
b = phytoplankton cell counts data.
Detailed spatial locations of the various studies appear in Figure 1B.
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remove invalid averaged matchup retrievals, further exclusion criteria

were applied following Bailey and Werdell (2006), which removes

matchups where fewer than 13 pixels were valid (i.e. where<50% of

the 25 pixels within a 5 x 5 pixel box were valid). Furthermore, mean

values whose standard deviations were >50% of the mean (indicative

of large variability within the 5 x 5 pixel box) were removed to ensure

spatial stability or homogeneity. Quality control measures applied to

in situ [Chl-a] measurements included removal of measurements that

were below the minimum detection threshold of the Turner

fluorometer (<0.02 ug l-1). Finally, in situ stations were excluded

that were too close to one another and overlapped with a 5 x 5 pixel

box (a flow diagram detailing the data quality control steps can be

found in Figure S1 in the Supplementary Material).
2.4 Evaluation of MODIS-Aqua and MERIS/
OLCI [Chl-a] algorithms

Statistical uncertainties between matchups of satellite ocean

colour derived [Chl-a] and in situ fluorometric derived [Chl-a]

were used to determine the most appropriate satellite sensor for

algorithm development. The MERIS mission covered the period

between 2002 and 2012, whereas OLCI and MODIS-Aqua were

launched in 2016 and 2002, respectively, and both are still

operational (at the time of writing). OLCI was developed on

MERIS heritage with a similar spectral setup in order to provide

continuity in algorithms and derived data; for this reason the

match-ups from these two sensors were combined to create a

single dataset. However, only the datasets covering the period

between 2002-2012 and 2016-present were used for MODIS-

Aqua so as to facilitate a fair comparison with MERIS/OLCI in

this evaluation. Statistical metrics were used to quantify the

agreement between in situ [Chl-a] and satellite-derived

observations. Prior to the analysis, both the in situ and satellite

retrievals were log-transformed. The statistics used for

comparison were the mean relative error (MRE), mean absolute

relative difference (MARD), median relative difference (MedRD),

root mean squared error (RMSE) and relative bias, the exact

equations of which can be found in the Supplementary Material

indicated as equations S1 - S5.

In addition, a linear regression model was used to assess the

degree of agreement between the in situ and satellite-derived [Chl-

a]. The intercept, slope and coefficient of determination (R2)

were computed.
2.5 Algorithm development

2.5.1 Subdividing the data by phytoplankton
group dominance

The quality-controlled in situ data were subdivided according to

phytoplankton group dominance. Dominance, in the context of this

study, was typically achieved when a phytoplankton group

contributed more than 50% to the total phytoplankton

community abundance. It should be noted however that the

nBUS is, for the most part, diatom-dominated (See Figure S3 on
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the Supplementary Material) and therefore the majority of the

datasets were considered diatom dominated. For diatoms only,

dominance was instead defined as a ≥70% contribution to the

total phytoplankton community with a cell concentration of

≥500,000 cells l-1. For flagellates and dinoflagellates, dominance

was considered when cells were >50% of the total cell abundance.

No cell count minima was set for these subsets as these stations

typically did not reach high cell concentrations (i.e. >106 cells L-1).

Further analysis of the data showed dominance for

dinoflagellates in both low [Chl-a] and high [Chl-a] (>4 mg l-1)

waters. Dinoflagellate dominance was thus subdivided into either

low biomass or high biomass dominance (LB and HB, respectively).

For HB dinoflagellate-dominated waters, dominance was

considered when contributing >50% to the total cell abundance

with cell counts of ≥106 cells L-1. Unfortunately, there were no in

situ stations where either coccolithophores or cyanobacteria met the

criteria for dominance. As such, this study focused only on

identifying unique spectral characteristics of diatoms, flagellates

and dinoflagellates from the satellite spectral matchup data. In

addition, unique spectral characteristics were determined for a

phytoplankton community that was considered mixed, i.e. when

all the identifiable groups (including coccolithophores and

cyanobacteria) and unidentifiable groups (i.e. classified as “other”

in the phytoplankton taxonomic datasets) each contributed<50% to

the total phytoplankton abundance with no set cell count minima.

2.5.2 Determining unique optical characteristics
The remote sensing spectral characteristics associated with

dominance of the aforementioned phytoplankton groups were

assessed using 4 approaches, namely 1) Rrs at different spectral

bands, 2) dual-band Rrs ratios, 3) spectral band difference

approaches and 4) a [Chl-a] abundance-based approach. For

these approaches, the magnitude and shape of Rrs at 10 spectral

bands were compared between waters dominated by the different

phytoplankton groups. For dual-band spectral ratios, a total of 87

different ratio combinations among the violet, blue, green and red

spectral regions were investigated. The spectral band difference or

line height (LH) was calculated at eight different adjacent spectral

band-triplets between 410 and 678 nm. LH is a measure of the

height of the Rrs at a “signal” band above a baseline formed by any

two given spectral bands, and was calculated as follows:

LH  =  Rrs_signal  −Rrs_lef t  −(Rrs_right −Rrs_lef t)

� lsignal− l lef t

lright− l lef t

 !
(2)

Where l is the wavelength value at a spectral band of interest,

Rrs_signal is the Rrs value at the signal band centred between two

spectral bands, Rrs_left is the Rrs to the left of Rrs_ signal, Rrs_right

is the Rrs to the right of Rrs_ signal, lsignal is the l value of

Rrs_signal whereas lright and lleft are the l values of Rrs to the right

and left of the Rrs_signal respectively. The nFLH, a downloadable

L2 MODIS-aqua product as described in the “data acquisition”

section above, is a well-known example.

Spectral reflectance peaks may occur near 685 nm in low to

moderate [Chl-a] waters as a consequence of [Chl-a] fluorescence
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emission (Gordon, 1979). However, this [Chl-a] fluorescence peak

may be masked in high phytoplankton biomass waters (e.g. [Chl-a]

> 20 mg l-1) as a result of increased absorption and backscattering by

phytoplankton coupled with increased water absorption (Gordon,

1979; Schalles, 2006; Gilerson et al., 2007); this is often observed as a

shift in the red reflectance peak towards the NIR region. In this

study, we quantify this red shift as a ratio between a red (Rrs667)

and NIR (Rrs748) spectral bands, the red-NIR ratio (RNR). The

Rrs748 is not provided in the standard L2 MODIS files, and is

instead calculated from the available nFLH, Rrs667 and Rrs678, and

solar spectral irradiance values from Thuillier et al. (2003) as

follows:

Rrs748   =

  81*Rrs678*1481:93
11

� �
−

81*nFLH
11

� �
−

70*Rrs667*1517:73
11

� �� �

÷ 1288:25

(3)

The RNR was then calculated as:

RNR  =  
Rrs748
Rrs667

(4)

[Chl-a] was used as a proxy for phytoplankton abundance for

the development of the abundance-based algorithm, based

primarily on the understanding that at high biomass the

phytoplankton community was dominated by either diatoms

or dinoflagellates.
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2.6 Statistical analysis

Box and whisker plots were used to graphically display the

distribution and statistical parameters of the data which included

the median (Q2), lower (Q1 or 25
th percentile) and upper (Q3 or 75

th

percentile) quartiles as well as the lower (Q0 or minimum) and upper

(Q4 or maximum) extremes of the datasets. The box represents the

interquartile interval where 50% of the data is distributed. The

whiskers display the lower (minimum) and upper (maximum)

extremes of the datasets. Outliers were defined as data points that

are 1.5 times higher than the interquartile range (IQR) calculated

from both the lower (Q1) and upper (Q3) quartiles and indicated as

circles in the box and whisker plots. The 25th and 75th percentiles

were used to define optical signature thresholds associated with

dominance of the phytoplankton groups under investigation. The

Matplotlib, Scipy.stats, Numpy and Sklearn.metrics Python (version

3.7.3) packages were used for statistical data analysis.
3 Results

3.1 Evaluation of MODIS-Aqua and MERIS/
OLCI [Chl-a] algorithms in the nBUS in
comparison with in situ data

For both MODIS-Aqua and MERIS/OLCI sensors, the quality-

controlled [Chl-a] match-up datasets were used for comparison

(Figure 2), which covered the in situ [Chl-a] range of 0.18 – 36.25
FIGURE 2

The top panel shows raw and quality-controlled (QC) in situ versus satellite [Chl-a] data for the (A) MODIS-Aqua (blue dots), (B) MERIS/OLCI (green
dots) and raw data (grey crosses) (C) linear regression statistics with 95% confidence intervals (shaded areas) for the QC [Chl-a] comparisons
between MODIS-Aqua (blue shaded line) and MERIS/OLCI (green shaded line). The number of QC datasets used for comparative analysis (n) are
indicated. The bottom panel compares the data distribution between in situ (red) and satellite-derived [Chl-a] using the Kernel density estimation
(KDE) plots for (D) MODIS-Aqua (blue) and (E) MERIS/OLCI (green). (F) is a direct comparison of the ratio of in situ to satellite [Chl-a] between the
two sensors (blue: MODIS-Aqua; green: MERIS/OLCI). All datasets were log-transformed prior to plotting and statistical analysis.
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mg l-1. The matchup datasets were reduced from n=56 and 54

stations to n= 36 and 37 for MODIS-Aqua and MERIS/OLCI

respectively, following the application of the stringent quality

control measures outlined in Figure S1. Scatter plots of the

comparisons between in situ and satellite [Chl-a] are shown in

Figures 2A, B with the data that passed quality control being easily

identified from the raw data that did not. Statistical parameters of

the linear regressions between the quality-controlled data showed a

positive correlation between in situ [Chl-a] and satellite retrievals.

The Pearson correlation coefficient (r) was similar for both sensors,

with MODIS-Aqua having a slightly lower correlation (r = 0.67)

than that of MERIS/OLCI (r = 0.68) (Figure 2C).

Both sensors showed a similar [Chl-a] distribution when

compared to co-located in situ [Chl-a] observations (Figures 2D,

E), withMERIS/OLCI having a few data points outside the maximum

range of the in situ [Chl-a] centred at ~2 ug l-1 (Figure 2E). In order to

better understand the distribution between the datasets, the log-

transformed [Chl-a]in situ/[Chl-a]satellite ratio was determined

(Figure 2F) and showed that the apex of distribution for MODIS-

Aqua was closer to zero (i.e. the 1:1 line), while the majority of the

data was distributed within a positive ratio for both satellites. This

positive distribution is indicative of a general tendency for both

sensors to underestimate in situ [Chl-a]. This was similarly evident

for both sensors in the negative mean relative error (MRE) (-44.6%

and -38.7% forMERIS/OLCI andMODIS-Aqua respectively) and the

negative median relative errors (-32.5% and -13.9% for MERIS/OLCI

and MODIS-Aqua respectively) (Table 2). Similar findings (i.e.

overestimation at lower [Chl-a] and underestimation at higher

[Chl-a]) were reported by Dogliotti et al. (2009) for MODIS-Aqua

when compared with SeaWiFS for the Argentinean Patagonian

continental shelf between 38° S and 55° S, which they attributed to

differences in phytoplankton composition across a similar range of

[Chl-a].

Comparison of MODIS-Aqua to in situ [Chl-a] for the full

dataset (n=179) (i.e. not limited to the time period that coincided
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with MERIS/OLCI), showed similar statistical results (data

distribution and error margins) (Figures 3A, B). An overall [Chl-

a] underestimation tendency is similarly observed as shown in

Figures 3C, C inset), the statistical metrics of which (MRE, MARE,

RMSE, MedRE and Bias) are also summarised in Table 2, with a

tendency to overestimate at very low [Chl-a] concentrations

(Figure 3D). Overall, it can be observed from the log ratio

distribution in Figure 3D that the MODIS-Aqua satellite

algorithm compared well with in situ measurements and that the

error margins improved when the expanded full data matchups

were used.
3.2 Deriving phytoplankton optical
fingerprints from ocean colour
remote sensing

3.2.1 Remote sensing reflectance
Figure 4 shows the Rrs characteristics across 10 spectral wave

bands in the visible range for oceanic waters dominated by different

phytoplankton community groups, namely diatoms, HB and LB

dinoflagellates, flagellates and mixed assemblage. These Rrs spectra

showed considerable differences in magnitude and shape among the

phytoplankton groups, which is subsequently exploited for deriving

optical fingerprints that are characteristic for specific groups. For

example, the Rrs minima observed in the longer wavelengths (i.e.

red region: 645, 667 and 678 nm) is evident for all phytoplankton

groups except HB dinoflagellates, whose Rrs minima is in the

shorter violet/blue region (412/443 nm) (Figure 4). LB

dinoflagellates had a characteristic maxima in the violet/blue

region (412/443 nm) of the spectra, while for both HB

dinoflagellates and flagellates, the Rrs magnitude increased with

increasing wavelength from violet/blue-to-green with the Rrs

maxima located in the green spectral region (555 nm) for HB

dinoflagellates & (547 nm) for flagellates.
TABLE 2 Statistical metrics used for comparison of satellite-derived and in situ [Chl-a] match-ups between the MODIS-Aqua and MERSI/OLCI sensors
in the northern Benguela.

Statistical metrics Satellite sensor

MERIS/OLCI MODIS-Aqua Full MODIS-Aqua data

n 36 37 179

MRE (%) -44.618 -38.739 -7.443

MARE 0.803 0.279 0.429

RMSE 0.445 0.393 0.320

Median 0.332 in situ; 0.224 satellite 0.305 in situ; 0.263 satellite 0.408 in situ; 0.227 satellite

MedRE (%) -32.354 -13.902 -44

Ratio* 1.649 2.138 0.182

Bias 0.009 0.008 0.002

Slope 0.776 0.547 0.478
*: mean Chl-a in situ/Chl-a sat ratio.
n: number of data matchups.
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3.2.2 Remote sensing reflectance spectral
band-ratios

Multiple spectral band-ratios were investigated to identify optical

signatures typical of waters dominated by the various phytoplankton

groups under investigation. Boxplots of band-ratios were used to assign

thresholds associated with the probability of dominance by each group

based on the 25th and 75th percentiles of the datasets (Figures 5A–D).

The green/violet, blue/violet, violet/violet, blue/blue and red/violet

spectral band-ratios yielded no obvious unique spectral thresholds

that may be assigned to dominance of any group as the data

distribution (box plots) were within similar overlapping ranges (data

not shown). However, characteristic dual spectral band-ratio

thresholds were identified for red/blue (Rrs678/Rrs488), green/green

(Rrs547/Rrs531), red/red (Rrs645/Rrs678) and green/blue (Rrs555/

Rrs488) ratios that could describe a high probability for the presence

of diatoms, LB dinoflagellates, HB dinoflagellates, flagellates and mixed

communities. These differentiations are graphically represented in

Figures 5A–D and the threshold values summarised in Table 3. The

LB dinoflagellates had characteristically low red/blue, green/green and

green/blue ratios, while diatoms occupied an intermediate green/green

and green/blue band-ratios. The HB dinoflagellates had
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characteristically high green/green, red/red and green/blue band-ratios

(Figures 5A–D blue shading). Although HB dinoflagellates typically

had a higher red/blue ratio than diatoms, they expressed a large overlap

(Figure 5A teal shading). Flagellates overlapped the mixed assemblage

in the green/green ratio (Figure 5B magenta shading) but occupied a

relatively unique, yet narrow distribution band in the red/blue ratio

(Figure 5A purple shading), while the mixed community had a distinct

red/red band-ratio (Figure 5C orange shading).

3.2.3 Spectral band difference, RNR and [Chl-a]
The characteristic spectral band difference, RNR and [Chl-a] for

detection of conditions associated with dominance of diatoms, LB

dinoflagellates, HB dinoflagellates, flagellates and mixed

communities were investigated and are graphically represented in

Figure 6, with thresholds indicated. The threshold values for

spectral band difference are summarised in Table 3. Both diatom

and HB dinoflagellate-dominated waters shared a characteristic of

high nFLH (Figure 6A, teal shade), although diatoms displayed the

highest nFLH by comparison. However, HB dinoflagellates had a

higher RNR and [Chl-a] biomass and a lower line height at 531 nm

(LH531) than diatoms (Figures 6B–D). Although generally having
FIGURE 3

Comparison between full (n = 179) in situ [Chl-a] dataset and MODIS-Aqua satellite match-up retrievals. (A) Raw and quality controlled datasets, (B) Linear
statistical regression of QC Chl-a between in situ and MODIS-Aqua match-ups, (C) Comparative overview of [Chl-a] distribution from in situ and MODIS-
Aqua using the Kernel density estimate plots and boxplots (inset). The dotted vertical lines indicate the mean [Chl-a] and (D) distribution plot of log-
transformed [Chl-a]in situ/[Chl-a]satellite ratio.
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similar spectral features to other phytoplankton groups, the

flagellate-dominated waters represent a discernible nFLH range

between diatoms and dinoflagellates (Figure 6A, purple shade).

Unlike their high biomass counterparts, the LB dinoflagellates had

the lowest nFLH, RNR and were generally dominant in low [Chl-a]

conditions (Figures 6A–C). The spectral band difference and [Chl-

a] features of the mixed community showed no unique

characteristics and were thus indistinguishable from other groups
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using these approaches. It should be noted that several line heights

were calculated at various spectral wavelengths and were distributed

similarly for all the groups (data not shown). Generally, variability

in line height was observed in the green spectral regions (531, 547

and 555 nm) with a resolution between diatoms and HB

dinoflagellates while the remaining groups showed no obvious

line height thresholds unique to them. Important to note is that a

final category was defined as “low Rrs signal”, where the Rrs signal
FIGURE 4

The remote sensing spectral reflectance (Rrs) in the visible range of the spectrum with wavebands at 412, 443, 469, 488, 531, 547, 555, 645, 667 and
678 for samples from the nBUS waters dominated by the phytoplankton groups (Diatoms, flagellates, low (LB) and high (HB) biomass dinoflagellates
and Mixed assemblage from the MODIS-Aqua satellite sensor are shown in the left panel. The cyan line indicates the mean Rrs at each spectral band
and the number of match-ups (n) are indicated. The coloured bars on the right panel represent the corresponding % phytoplankton community
composition at each station per phytoplankton group. The colours refer to diatoms (green), LB dinoflagellates (turquoise), HB dinoflagellates (blue),
flagellates (purple), coccolithophores (red), cryptophytes (orange), cyanobacteria (black) and other/unknown (yellow).
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was considered too low to confidently retrieve any discernible signal

due to a low signal-to-noise ratio, these low Rrs criteria were defined

by the lowest 25th percentile of the distribution of each Rrs variable

and are summarised in Table 3.
3.3 Algorithm development

Our approach to detecting phytoplankton community

characteristics from space investigates statistical thresholds based

on [Chl-a] biomass, dual band-ratios and spectral band differences

to exploit small variations in the Rrs characteristics associated with

dominance of specific phytoplankton groups. If the Rrs spectrum

from a pixel is within a range defined by the threshold values for

waters associated with the dominance of a particular phytoplankton

group, then it is assigned to reflect the likelihood of that

phytoplankton group being dominant. These thresholds are

summarised in Table 3.

Given the identified thresholds for the various phytoplankton

groups from the remote sensing variables indicated in Table 3, the
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next step was to determine the most suitable variables for algorithm

development. To do this, we assess 1) the algorithms’ ability to

confidently classify/distinguish multiple phytoplankton groups, 2) the

characteristics of the linear relationship between the variables in

Table 3 and [Chl-a], with the understanding that biomass is likely to

influence the spectral characteristics of Rrs and 3) the range in [Chl-a]

that is typical for each of the defined thresholds for the various

phytoplankton groups, favouring variables that allow for the

classification of a number of phytoplankton groups within a similar

range of [Chl-a]. While some algorithms are suitable for detection of

specific phytoplankton groups during high biomass blooms, we

embark on developing an algorithm that is suitable for the detection

of dominant groups even in low [Chl-a] (non-bloom) conditions. To

assist with the assessment of these criteria, we examined the linear

relationship between the Rrs variables and [Chl-a] (Figures 7A–F).

Each of the three criteria is presented in detail below:

1) Can the Rrs variable confidently dist inguish

multiple PFTs?

In Figure 7A, the red/blue ratio defining flagellates and LB dinos

are tightly clustered together with a low range of variability in the
FIGURE 5

Boxplots of the dual-spectral band ratios for waters associated with dominance of diatoms, LB dinoflagellates (LB_dino), flagellates, mixed
community and HB dinoflagellates (HB_dino). The thresholds of the red/blue (Rrs678/Rrs488) (A), green/green (Rrs547/Rrs531) (B), red/red (Rrs645/
Rrs678) (C, D) green/blue (Rrs555/Rrs488) band-ratios are indicated by the dashed horizontal lines and colour shaded bands (light green = Diatoms;
cyan = LB dinoflagellates, purple = Flagellates, blue = HB dinoflagellates, orange = Mixed, teal = Diatoms/HB dinoflagellates, magenta = Flagellates/
Mixed). Statistical parameters such as the median, mean and outliers are indicated as the red line, red diamond and white circles respectively.
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FIGURE 6

Boxplots of (A) nFLH, (B) RNR, (C) log-transformed [Chl-a] and (D) line height at 531 nm (LH531) for waters associated with dominance of Diatoms,
LB dinoflagellates (LB_dino), Flagellates, HB dinoflagellates (HB_dino) and Mixed communities. The threshold ranges are indicated by the dotted
horizontal lines and colour schemes (green = Diatoms; cyan = LB_dino; purple = Flagellates; blue = HB_dino; red = Mixed; teal scale = Diatoms/HB
dinoflagellates). The median, mean and outliers are indicated as the bold black line, red diamond and white circles respectively.
TABLE 3 Summary of MODIS-Aqua spectral threshold characteristics for waters dominated by various phytoplankton groups in the nBUS.

Phytoplankton group MODIS-Aqua remote sensing variables

Band-ratios Spectral band difference

Log Chla
Red: Blue
(488/678)

Green: Green
(547/531)

Red: Red
(645/678)

RNR
(748/667)

Green: Blue
(555/488) nFLH LH531

Diatoms >0.363 >0.952
<1.214

– >0.221
<0.593

>1.031
<2.073

>0.392 >-0.189
< 0.231

>0.385
< 1.264

LB dinoflagellates >0.064
<0.189

>0.758
<0.875

– >0.029
<0.221

>0.496
<0.792

>0.124
<0.186

– >-0.030
< 0.189

Flagellates >0.266
<0.363

>0.875
<0.952

– – – >0.294
<0.392

– –

Mixed community – >0.875
<0.952

>0.844
<0.988

– – >0.186
<0.294

– –

HB dinoflagellates >0.363 > 1.214 >0.988 >0.593 >2.073 >0.392 >-0.365
<-0.189

>1.264

Low Rrs signal <0.064 <0.758 – <0.029 <0.496 <0.124 <-0.365 <-0.030
F
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optical identifier making it difficult to distinguish them from each

other. In addition, there was overlap in the range of diatoms and HB

dinos. In Figure 7E, although more broad, it is clear that the

majority of PFTs share a similar range of variability in the red/

red ratio hampering an ability to identify the majority of PFTs.

2) Is variability in the Rrs signal biomass dependent?
Frontiers in Marine Science 13
A strong positive linear relationship and slope close to 1 was

observed between [Chl-a] and the red/blue (r2 = 0.721, slope =

0,784) and green/blue band-ratios (r2 = 0.947, slope = 0.958)

(Figures 7A, B, respectively), suggesting that these optical signals

were, for the most part, biomass-driven. This is not surprising as the

global ocean colour remote sensing algorithms for [Chl-a] retrieval
B

C
D

E F

A

FIGURE 7

Linear regression analysis between [Chl-a] against the (A) red/blue, (B) green/blue, (C) green/green, (D) nFLH, (E) red/red and (F) RNR band-ratio,
algorithms, [Chl-a] data was log-transformed prior to analysis. The linear regression is shown by the dashed orange line. The black dotted line
represents the theoretical 1:1 relationship. The coefficient of determination (R2), slope, intercepts and number of samples (N) are indicated. The
samples representing dominance by diatoms, LB dinoflagellates (LB_dino), HB dinoflagellates (HB_dino), flagellates and mixed communities are
indicated as green, cyan, blue, purple and orange dots respectively. The shaded areas denote the unique spectral characteristic thresholds for each
group (green = diatoms, cyan = LB dinoflagellates, orange = mixed, purple = flagellates, blue = HB dinoflagellates, magenta = mixed/flagellates, teal
= diatoms/HB dinoflagellates).
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from the MODIS-Aqua are based on the ratio of the red, blue and

green spectral bands. Using biomass as a criteria (or any other

variable that is strongly dictated by biomass) constrains the

algorithm’s ability to detect a particular phytoplankton group

outside of the assigned biomass range. This is highlighted by the

absence of any overlap (i.e. vertical stacking) of the PFT boxes

defined by the green/blue ratio in Figure 7B.

3) Is there overlap in the range of [Chl-a] for different PFTs?
Although the green/green band-ratio (Figure 7C) showed a

similar positive linear relationship with [Chl-a] (r2 = 0.784), it

had a much lower slope (slope = 0.207), while nFLH and RNR both

displayed weak linear relationships and lower slopes (r2 = 0.455,

slope = 0.364, Figure 7D and r2 = 0.415, slope = 0.236, Figure 7F,

respectively). When the slope is more gradual (i.e. Figure 7C, D, F),

the range in [Chl-a] encompassed for each Rrs identifier is broader.

Moreover, for these optical signatures, there is a larger range of

variability evident in the Rrs identifiers for a similar range in [Chl-a]

concentration. This is highlighted by the overlap in [Chl-a] among

the groups but with varying Rrs signatures (i.e. the vertical stacking

of PFT boxes across a similar range of [Chl-a]).

Given the above, the red/blue (Figure 7A), green/blue

(Figure 7B), and red/red (Figure 7E) band-ratios were not

considered further and eliminated as viable variables for further

algorithm formulation. On the other hand, nFLH and the green/

green band-ratio were considered the most suitable candidates for

further development of the phytoplankton PFT algorithm. In

addition, the RNR spectral band-ratio was also considered, in

particular as a means of discriminating dinoflagellates from

diatoms under high biomass conditions (i.e. when [Chl-a] > 8).

Unsurprisingly, there are overlaps in some optical signatures of

different phytoplankton groups. For instance, both diatoms and HB

dinoflagellates have an overlapping nFLH range (0.392) (Figure 7D,

teal shading) and both flagellates and mixed communities share a

similar range in the green/green ratio (Figure 7C, magenta shading).

However, they have other unique signatures that allow a

combination of criteria to be used to separate them out. For

example, in the case of diatoms and HB dinoflagellates we use the

green/green and RNR band-ratios to distinguish the two groups
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(Figure 8A). That is, if nFLH is > 0.392 then that pixel can be

classified as either a diatom or a HB dinoflagellate. However, if the

RNR is > 0.593 and the green/green ratio is >1.214 then that pixel is

more likely to be dominated by HB dinoflagellates and as such is

assigned that category. However, if the green/green ratio is<1.214

and the RNR is< 0.593 then it is more likely a diatom and is assigned

as such within the given nFLH range. The use of combined

algorithms of spectral characteristics increases the robustness and

reliability of the algorithm, while at the same time allowing groups

to be detected across a broad range of [Chl-a]. For example, diatoms

can be detected across the full range of their green/green and nFLH

criteria, so long as the RNR is not high, in which case it is assigned to

HB dinos.

Similarly, in the case of flagellates and mixed communities,

despite an overlap in their green/green ratio, they could be

distinguished from each other based on the unique statistical

signature within their nFLH distribution (Figure 6A). That is, a

pixel with a green/green band-ratio between 0.875 and 0.952 could

be classified as either flagellate-dominated or a mixed community.

However, if the nFLH is between 0.294 and 0.392 then it would be

assigned to reflect flagellate dominance, whereas if the nFLH is

between 0.186 and 0.294 it would reflect a mixed community

(Figure 8B). LB dinoflagellates on the other hand have a distinct

green/green band-ratio and nFLH threshold, and unlike diatoms,

HB dinoflagellates, flagellates and mixed community, were

distinguished using individual thresholds of the green/green band-

ratio and nFLH for their detection. Pixels are regarded as ‘other/

unknown’ phytoplankton when no algorithm threshold criteria is

met. A flowchart of the algorithm decision making tree

(application) for discrimination and classification of the various

phytoplankton groups in the nBUS is shown in Figure S2 of the

Supplementary Material.
3.4 Algorithm validation

The algorithm was tested for accuracy and compared against

randomly selected independent in situ datasets for diatoms.
BA

FIGURE 8

(A) Discrimination of diatom from dinoflagellate blooms based on differences in their RNR signals given their shared high green/green (>1.214) band-
ratio and nFLH (>0.392) spectral characteristics. (B) Flagellates and the mixed communities are distinguished based on their nFLH spectral
characteristics given their similarities in their green/green. and nFLH spectral characteristics. The blue, orange and purple colour shadings indicate
the spectral characteristics unique to HB dinoflagellates, mixed community and flagellates respectively.
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Unfortunately, this was only possible to do with diatoms, as this was

the only phytoplankton group that dominated at enough stations to

allow partitioning of the datasets into testing and validation groups.

All other groups had so few stations in which they dominated that

all had to be used to derive the most robust algorithm possible. The

diatom validation was achieved by comparing observations with

predictions (considered when in situ validation datasets’ Rrs spectra

fell within the algorithm detection thresholds). It should be noted

that diatom dominance of validation datasets were similarly defined

using the same criteria used to define diatom dominance for

training datasets. A total of 7 datasets were used for validation of

the diatom detection component of the algorithm for the nBUS. The

quantitative validation results for diatoms, calculated as overall

accuracy of the algorithm, was calculated as follows:

Algorithm   accuracy  =   (
Cc
Tc

)  �   100% (5)

where Cc is the correct classifications and Tc is the total

classification from the independent diatom dominance datasets

not used in the algorithm training datasets. We compared the

optical characteristics of the validation data for stations dominated

by diatoms against the algorithm thresholds and our algorithm

compared well with the independent in situ observations of diatom

dominance. Of the 7 stations, 5 matched with algorithm thresholds

(i.e. were correctly classified by the algorithm). This translates to a

percentage accuracy of 71.429%. The validation results demonstrate

the algorithm’s ability to translate MODIS-Aqua Rrs observations

to distributions of phytoplankton communities in the nBUS. The

diatom-dominated stations that were not correctly classified had

lower green/green and nFLH values that were below our algorithm’s

minimum detection thresholds. In addition, they occurred in waters

with low [Chl-a] that were between 1-2 mg l-1. However, we were
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able to correctly classify 3 stations of diatoms within the same [Chl-

a] range based on their Rrs characteristics.

Although we did not have sufficient in situ HB dinoflagellate

dominated station data to validate the algorithm, we were able to

demonstrate its ability to detect a known dinoflagellate bloom

identified in the southern Namaqua Benguela upwelling system

3.5 km from Lambert’s Bay (Cape Town, South Africa) in the sBUS

(Fawcett et al., 2007) (Figure 9).
4 Discussion

Forming the base of marine food webs, phytoplankton are key

ecological role players in upwelling systems and the global ocean.

Knowledge of their composition and their regional, seasonal and

interannual distribution and trends is key to understanding possible

climate-linked ecosystem changes with implications on ecosystem

health, economy, food security and climate response. Satellite

remote sensing is one of the only tools that can provide the

spatial, temporal and multi-decadal data information on

phytoplankton needed to adequately investigate their important

role in ecosystem function. Thus, there is a need for ocean colour

remote sensing algorithms that can discriminate between

phytoplankton functional types. Discrimination between diatoms

and dinoflagellates is particularly relevant to ecology, local

aquaculture and recreational activities as some of the bloom-

forming and toxin-producing species belonging to these groups

have been reported in the nBUS (Dijerenge, 2015; Louw et al., 2017;

Gai et al., 2018), which may be harmful to both marine life and

humans. Substantial work has been done using ocean colour

algorithms and modelling techniques to detect phytoplankton

community structure in the southern Benguela (Bernard et al.,
FIGURE 9

Evidence of the algorithm’s ability to detect a known harmful dinoflagellate bloom in the sBUS (Fawcett et al., 2007). The sampled coastal station in Lamert’s
Bay is indicated by the orange diamond.
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2005; Aiken et al., 2007; Evers-King, 2014; Smith and Bernard,

2020), but none as yet for the northern Benguela. This study is the

first to derive an ocean colour remote sensing algorithm for the

nBUS using a large compiled in situ microscopy dataset with

satellite match-ups for detection and mapping of the most

frequently encountered phytoplankton groups.
4.1 Determining the most appropriate
satellite sensor for algorithm development

The first step in this endeavour was to determine which satellite

product to use based on the availability of spectral bands in the red

and near infrared regions. We approached this decision by

comparing the two available ocean colour remote sensing

algorithms of [Chl-a] to in situ measurements in order to test

how well they performed in the high biomass coastal waters of the

nBUS. MODIS-Aqua provided more data near the 1:1 ratio than

MERIS/OLCI, suggesting a good approximation of in situ [Chl-a]

(Figure 2F). Although MERIS/OLCI had a higher slope (0.766) than

MODIS-Aqua (0.547), it contained more statistical errors (MRD,

MAE, RMSE, MARD) against in situ [Chl-a] than MODIS-Aqua

(as summarised in Table 2). We are however cognisant that

fluorometry-derived Chl-a may be biased towards higher

concentrations when compared to high-performance liquid

chromatography (HPLC), particularly in the presence of Chl-c

due to potential overlap in emission spectra (Moutier et al.,

2019). It should however be noted that the Chl-a datasets used in

the current study were measured using the non-acidification

technique (Welschmeyer, 1994), which minimises the

fluorescence effects of Chl-c, Chl-b and phaeopigments while

optimizing the sensitivity of [Chl-a]. Although both products

performed admirably, the MODIS-Aqua sensor observations

cover a larger temporal scale when compared to the now

discontinued MERIS and recent OLCI satellite sensors, which

allows for a much longer analysis of trend detection in the

northern Benguela, particularly for the period between 2012-2015

where there is a data gap during the transition fromMERIS to OLCI

sensors. The MODIS-Aqua product was thus selected for algorithm

development and further investigations of optical fingerprints of the

dominant phytoplankton taxonomic groups in the northern BUS.

Although the MODIS-aqua ocean colour retrieval of [Chl-a] was

determined to be statistically less erroneous than MERIS/OLCI for

the nBUS, it should be noted that this step in our approach was not

intended as a sensor validation study, which would instead involve

the use of in situ radiometric reflectance measurements compared

against concurrent satellite observations and is considered outside

of the scope of this study.

The three most prominent drivers of variability between in situ

and satellite derived [Chl-a] likely reflect the impact of atmospheric

correction, different approaches to measuring in situ [Chl-a] and

averaging across space and time. Atmospheric correction measures

are necessary to overcome interference from atmospheric variables

(e.g. aerosols, dust, clouds, scattered light etc.). The nBUS

experiences dynamic annual, seasonal, and event scale

atmospheric influences from terrestrial aerosol sources of dust
Frontiers in Marine Science 16
plumes from the Namib desert (Shikwambana and Kganyago,

2022), intense fog (Spirig et al., 2017) as well as coastal sulphur

eruptions (Ohde and Dadou, 2018), which may interfere with

accurate atmospheric correction, and subsequent [Chl-a]

retrievals from satellite-derived reflectance adding to regular

ocean-atmosphere contributions from moisture and aerosols (e.g.

sea spray) (Mayer et al., 2020). Additionally, discrepancies between

[Chl-a] derived from fluorometry versus HPLC can impact the

performance of the satellite algorithm. These discrepancies are

likely to be region or season specific as they depend on the

constituent pigments in the water that are in turn dictated by

phytoplankton community dominance which varies both regionally

and temporally. Another possible source of error is the scale

difference between in situ sampling and match-up retrievals. The

match-ups in the current study are derived from multi-pixel boxes

which cover a spatial range of 13 – 25 km2. Ship-board

measurements on the other hand are based on sampling 0.1 – 2 L

of seawater from a specific latitude-longitude location. Given the

small-scale spatial heterogeneity or patchiness of phytoplankton

abundance in the ocean (Pei et al., 2017; Scheinin and Asmala,

2020), averaging [Chl-a] over a multi-pixel box may produce

discrepancies between measured and satellite derived [Chl-a].

Efforts are made to minimise the effects of this error by exclusion

of multi-pixel boxes with mean values that have a coefficient of

variation (CV) greater than 0.15 (Bailey andWerdell, 2006). Finally,

it was challenging to obtain large numbers of match-ups in time and

space in the relatively data-poor region of the nBUS. Although we

initially prioritised matchups within 12 hours of sampling, to

minimise temporal discrepancies, the subsequent small number of

match up stations that passed quality control (n=73) meant that we

had to relax the time window constraint to 24 hours, which

increased our database to n=190. A comparison of the

relationships generated by the two data sets against in situ [Chl-

a] (i.e. n=73 and n = 190) showed no substantial differences in the

statistical relationships (i.e. slopes remained comparable at 0.632

and 0.478 respectively, while the correlation coefficients remained

similarly comparable at 0.744 and 0.578 respectively). We suspect

that the above-mentioned variables, either in combination or on

their own, as well as other factors not mentioned here, may have

contributed to the observed discrepancies between satellite

retrievals and in situ measurements of [Chl-a].
4.2 Phytoplankton optical fingerprints

Differences were observed in the Rrs spectral characteristics of

waters dominated by different phytoplankton groups. These

differences in optical characteristics can be attributed to

differences in cellular pigment composition (and content),

morphology, size and abundance (Vaillancourt et al., 2004; Mao

et al., 2010). The size and pigment differences of various

phytoplankton taxa in the nBUS have been shown previously

(Hansen et al., 2014; Barlow et al., 2018). For example, Hansen

et al. (2014) highlighted differences in water masses associated with

different phytoplankton taxa and abundance at different upwelling

stages from MODIS-aqua as testament to variability in Rrs (at 412
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nm, 554 nm and 665 nm). Although differences in optical signatures

can be exploited from space to distinguish different phytoplankton

groups, there nonetheless remains the potential for overlap between

different species that may occupy a similar size distribution and/or

pigment content, and/or range of abundance. Optical indices from

Rrs characteristics are complicated further by the complex interplay

between the effects of cell size and abundance. For example, optical

model simulations show that higher cell counts increase absorption

and backscatter coefficients in smaller sized cells whereas these

signals decrease with increasing cell size and lower cell abundance

(Laiolo et al., 2021). Furthermore, the pigment packaging effect (a

reduction in light absorption from high intracellular [Chl-a],

particularly in the blue wavelengths) increases with increasing cell

size being more pronounced in larger cells (> 10 μm) such as

diatoms (Soja-Wozniak et al., 2020; Laiolo et al., 2021). The

observed optical signatures that are assigned in this study to

different phytoplankton groups are generated from a net effect of

the optical impacts from the communities dominant size structure,

pigment composition and biomass at which any one group

commonly occurs. Regardless of the complexity of the inter-

relationships between the multiple drivers of Rrs characteristics,

our optical proxy accumulates these signals to statistically discern

the band-ratio ranges typical of each group that may subsequently

be used to identify them. In light of this, the band-ratios, RNR and

nFLH fluorescence signals can still be recognised as effective signals

for characterising the presence of different phytoplankton groups. A

purely abundance-based approach on the other hand makes the

assumption that different species dominate at different typical

biomass thresholds, and as such, is not able to distinguish

between phytoplankton blooms of two different species with a

similar abundance (Uitz et al., 2006; Hirata et al., 2011). Although

all four approaches to derive optical fingerprints for the different

phytoplankton groups were investigated in this study, the final

algorithm used a combination of only 2 approaches (i.e. the band-

ratio and spectral band difference approach to the exclusion of

individual Rrs at different spectral bands and [Chl-a] abundance-

based approaches). This multi-layered ocean colour remote sensing

algorithm for phytoplankton group detection in the nBUS increases

the robustness of the algorithm in that a pixel typically has to meet

at least two criteria between the green/green, RNR and nFLH before

it is assigned as either a diatom, dinoflagellate, flagellate or

mixed community.

Band-ratio algorithms, particularly in the blue-green spectral

bands, are typically designed for global applications over optically

deep ocean waters for [Chl-a] retrievals (O’Reilly et al., 2000). In

coastal waters, optically active non-phytoplankton materials such as

coloured dissolved organic matter (CDOM) are capable of light

absorption in the blue and violet spectral regions in particular

(Morel et al., 2010; Coble, 2013). Their absorption in the blue

spectral region typically dominates that of phytoplankton in

estuarine and coastal areas (D’Sa and Kim, 2017; Isada et al.,

2021). As such, the blue-violet region of the Rrs spectra is likely

to have a larger error associated with it that may undermine our

ability to capture phytoplankton-driven characteristics. To

overcome this limitation, we instead make use of spectral bands

in the red-NIR (i.e. nFLH and RNR) and green (i.e. green/green)
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regions for phytoplankton group classification in the nBUS.

Similarly, although the nFLH signal could also be influenced by

CDOM, the absorption of CDOM in the red-NIR is very low and its

influence on nFLH is considered negligible, making nFLH and

other algorithms utilizing the red-NIR spectral bands ideal

candidates for phytoplankton bloom detection and classification

in optically complex coastal waters such as the dynamic nBUS. Such

algorithms (i.e. those utilising the Rrs665/Rrs709 band-ratio) have

previously been successfully developed, validated and applied in the

sBUS for phytoplankton bloom detection (Bernard et al., 2005).

Smith and Bernard (2020) later discriminated HABs of diatoms

from dinoflagellates using the maximum line height approach

(MLH), a spectral band difference algorithm analogous to nFLH

which computes the MLH between two line heights calculated at

Rrs681 and Rrs709 spectral bands, coupled with the line height ratio

(ratio of line heights calculated at 681 and 709 nm). In the current

study, we adopted a similar approach (use of products with spectral

bands in the red and near infrared spectral regions) but for different

satellite products (i.e. nFLH) and used in combination with a green/

green spectral band-ratio and thresholds that best suited the unique

waters in the nBUS.

It is recognised that the ability to distinguish different

phytoplankton groups may be hampered by pixel averaging when

their distribution is spatially heterogeneous e.g. at the transition

between inshore and offshore communities (e.g. Barlow et al., 2018).

The 5x5 pixel match-up box centred around the in situ station in the

current study spans an area of between 16 - 25 km2. It is thus

possible that individual pixels may be dominated by different

groups, which can introduce errors in community identification

when averaging across a 5x5 pixel box. As a precaution to minimise

this effect, we use the standard deviation to identify boxes that

express high variability and exclude them from further analysis.
4.3 Algorithm application

Using the algorithm as depicted in Figure S2 in the

Supplementary Material, we translate the green/green, RNR band-

ratios as well as nFLH data from the MODIS-Aqua according to the

thresholds listed in Table 3 to an example map of the distribution of

the phytoplankton community in the nBUS for 28 April 2009

(Figures 10). From these maps (Figures 10B-D) it is clear how the

spatial distribution of particular Rrs characteristics can be used to

identify the phytoplankton groups. Diatoms were the most spatially

abundant group, which is typical of high biomass inshore waters of

the Benguella (Matlakala, 2019). Bloom conditions (Figure 10A;

[Chl-a] >2 ug l-1) were typically encountered inshore with a

filament extending offshore at 22°S. These blooms were primarily

dominated by diatoms, which are the most frequently observed

blooms in the nBUS (Hansen et al., 2014; Louw et al., 2017;

Matlakala, 2019). Diatoms were easily distinguished from their

high nFLH and high green/green ratios (Figures 10B, C,

respectively). Dinoflagellates typically dominated in low [Chl-a]

conditions and were generally distributed further offshore (~140 km

from shore), where the waters are typically warmer and nutrient-

limited (Mohrholz et al., 2014). This is consistent with the literature
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(Hansen et al., 2014; Wasmund et al., 2014; Matlakala, 2019) and

provides further confidence in the algorithm’s abilities.

Dinoflagellates were also evident in low [Chl-a] waters closer to

shore (north of 22°S latitude) near the A-B front, where the shelf is

narrower and there is typically evidence of a warm water intrusion

from the Angola current (Hutchings et al., 2009; Rouault et al.,

2018). There was however some evidence of HB dinoflagellates

within the inshore high [Chl-a] bloom, which have been observed

to occur inshore typically in winter (Dijerenge, 2015; Matlakala,

2019). These dinoflagellate blooms are readily distinguished from
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diatoms by their characteristically high RNR signature

(Figure 10D). Large patches of spatially cohesive flagellates were

evident typically offshore (notably at ~23°S and 25°S) and identified

by their unique green/green and nFLH combination. The most

common flagellates identified in the Benguela are nanoflagellates,

most commonly observed in the mid-shelf region and further

offshore in the Namibian upwelling system (Hansen et al., 2014;

Barlow et al., 2018), which is in agreement with our algorithm’s

predictions of the spatial distribution of this group from the

example maps. Very low [Chl-a] waters were coincident with
FIGURE 10

Demonstration of phytoplankton group dominance classification by the proposed ocean colour remote sensing algorithm for phytoplankton
community from MODIS-Aqua observations for 11 March 2019 in the nBUS. (A) [Chl-a] distribution, (B) The observed nFLH, (C) green/green (Rrs547/
Rrs531) band-ratio, (D) red/near-infrared (Rrs748/Rrs667) band-ratio and (E) application of the algorithm indicating the distribution of dominant
phytoplankton groups in the nBUS.
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extremely low values of nFLH, green/green and RNR and

characterised as waters with an Rrs signal too low to confidently

identify as any phytoplankton group. Of note is that despite a clear

[Chl-a] gradient (i.e. a typical decrease in biomass from inshore to

offshore, Figure 10A), there is evidence of the algorithm being able

to classify diatom, dinoflagellate and flagellate dominated

communities as well as mixed community assemblages in both

low and high [Chl-a] conditions (Figures 10A, E). From this

example image it is clear how the high spatial and temporal

coverage of satellite remote sensing can be harnessed to our

advantage to better understand the dynamics, distribution,

phenology and trends in phytoplankton community composition.
4.4 Recognising algorithm limitations

4.4.1 Use of microscopy data
In situ phytoplankton data is a prerequisite for ocean colour

algorithm development and validation for satellite remote sensing

of phytoplankton from space. Inaccurate or incomplete in situ data

undermines our ability to correctly associate optical signatures to

cells that aren’t identified and may therefore lead to erroneous

assignment of optical signatures to other phytoplankton groups,

making accurate in situ measurements a scientific priority for

increasing the accuracy and confidence of remote sensing and

model development. Techniques such as microscopy are

traditionally used in field observations for phytoplankton

enumeration and taxonomic identification, providing valuable

information for studying the diversity of phytoplankton taxa for

assessing ecosystem health and balance, environmental monitoring

and conservation, climatology and aiding aquaculture and fisheries

industries with HABs detection among others (Anderson and

Throndsen, 2004; Louw et al., 2017). Microscopic cell count

techniques are particularly useful in that they provide

identification of cells to species level. Although phytoplankton

community information can be derived from these techniques,

they have their limitations. For instance, analysis is dependent on

highly trained and skilled people with thorough taxonomic

expertise; these methods can be expensive, labour-intensive, time

consuming, and may produce low precision unless a very large

number of cells are counted (Anderson and Throndsen, 2004).

Differential preservation of cells can lead to preferential cell loss and

can thus introduce bias to sample classification (Williams et al.,

2016). The use of preservatives greatly affects the observed

community composition depending on which preservative is used

[e.g. Lugol’s solution (either acidic or neutral) or formalin)] and for

how long the samples were stored prior to analysis (Williams et al.,

2016). For instance, armoured dinoflagellates are well preserved in

all types of Lugols for up to 8 months whereas unarmoured

dinoflagellates are only well preserved in acid Lugols for the same

period. Microflagellates and diatoms are well preserved in acid

Lugols (3 months and ~4 months respectively), while diatoms can

also be stored in neutral Lugols (up to 2 months). Coccolithophores

on the other hand are poorly preserved in acid Lugols and instead

require neutral Lugols (2 weeks) (Williams et al., 2016).

Phytoplankton samples from cruise campaigns in the current
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study were preserved in acidified (Meteor M153) and neutral

(RGNO2019) Lugol’s solutions and analysed within 3 months of

sampling. As such, coccolithophores may be misrepresented in both

samples due to preferential preservation, this in addition to their

small size which makes them harder to enumerate. Dinoflagellates

(armoured and naked), diatoms and flagellates on the other hand

are more likely to be well represented as they are generally well

preserved in acidic Lugols even 225 days after sampling as opposed

to the neutral Lugols with optimum preservation of samples for 28

days (Williams et al., 2016). In this regard, samples preserved in

neutral lugol solution from the RGNO2019 cruise that were

analysed after a month (but within 3 months) may be

underrepresenting some of these groups (i.e. diatoms, flagellates,

coccolithophores). Furthermore, smaller (picophytoplankton) and

fragile cells are not easy to identify and quantify; as a result they

may be under-represented. Indeed, the absence of an occurrence of

coccolithophore dominance in this study may be due to their small

size (making them harder to identify and enumerate) together with

a poor ability to adequately preserve them in Lugols solution

(Williams et al., 2016). Finally, interpersonal differences from

data analysed in different laboratories may also undermine the

precision of microscopic analyses. Identification of pigment

markers of phytoplankton groups using high-performance liquid

chromatography (HPLC) has been adopted as an alternative proxy

for phytoplankton community analysis (Kheireddine et al., 2017;

Kramer et al., 2020). This method has some advantages against

microscopic analysis such as being highly reproducible and allowing

the quantification and identification of smaller and more fragile

cells, including cells that would normally be degraded by sample

preservation with Lugols (Paul et al., 2021; Flander-Putrle et al.,

2022). Advancements in the classification of phytoplankton groups

has been made possible with the aid of specialised computer

software such as CHEMTAX, which facilitates the classification of

phytoplankton groups by means of pigment-to-Chl-a ratios

(Mackey et al., 1996). However, pigment analysis is not able to

provide the same level of detail as microscopy as they are not able to

identify individual phytoplankton species. Also, similarities in

photosynthetic pigments across multiple taxa make it difficult to

distinguish different groups with confidence. Arguably, the future of

phytoplankton enumeration lies within the realm of imaging with

in situ cameras, holographic cameras and imaging flow cytometry.

Although not without their own set of challenges (Giering et al.,

2020), these approaches can generate images used to derive

concentration and biodiversity information, as well as organism-

specific size and shape (Boss et al., 2022). Given the strengths and

weaknesses of all the various approaches, it is clear that no one

technique can be considered the holy grail for phytoplankton

community analysis and it is generally recommended that

different techniques are integrated in order to provide a more

comprehensive analysis of phytoplankton communities.

4.4.2 Limited datasets for development
and validation

Although there was arguably an adequate sample size for

stations with diatom dominance (n = 37) to allow this

phytoplankton group to be more robustly characterised and
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partitioned into two sets of independent training (n=30) and

validation (n=7), the number of matchup stations observing

dominance of HB dinoflagellates (n=3), LB dinoflagellates (n=10),

flagellates (n=11) and mixed phytoplankton community (n=13)

were small. The qualitative nature of our algorithm only allows an

indication of the dominance of one group in the presence of others

and does not estimate the relative composition of each group nor

the abundance of each group. It is recognised that these small data

sets (which are further constrained by the necessity for satellite

matchups in a region that is characterised by a persistent

stratocumulus cloud deck) severely limit the robustness of the

algorithm being developed. The authors are nonetheless

committed to working with currently available and accessible data

to explore the expansion of this data set for the purposes of

validation of the existing algorithm and for future refinement

with improved statistics as more data becomes available over

time. In spite of the recognised limitations, it is clear that there is

a dire need for such an algorithm and that the one proposed here

provides a good first approach that can be applied retrospectively to

20 years of ocean colour data for important investigations that

characterise the distribution patterns, phenology and trends of key

phytoplankton groups in the region.
5 Conclusions

In the majority of the studies of community structure dynamics

in the nBUS to date, microscopy has been the most commonly used

technique for identifying phytoplankton distribution (Hansen et al.,

2014; Dijerenge, 2015; Barlow et al., 2018) and environmental

monitoring (Louw et al., 2017; Matlakala, 2019), although some

studies used a combination of microscopy and pigment analysis

(Barlow et al., 2018), with the limitations of both being clear.

Satellite-based remote sensing of ocean colour is the only

observational capability that can provide synoptic views of upper

ocean phytoplankton characteristics at high spatial and temporal

resolution (~1 km, ~daily) and a high temporal extent (global scales,

for years to decades). It is thus important that we maximise the

value of remote sensing observations by developing ecosystem-

appropriate, well characterised products. This study takes

advantage of unique spectral features (reflectance, reflectance

ratios and spectral band difference) of oceanic waters dominated

by various phytoplankton groups to create an ocean colour remote

sensing algorithm for phytoplankton classification. Our future work

will focus on acquiring additional in situ data for improvement and

validation of the algorithm while venturing into discrimination of

bloom types (e.g. non-HABs from HABs of diatoms of Pseudo-

nitzschia species and dinoflagellates) and the detection of other key

species (e.g. coccolithophores). Despite its limitations, the algorithm

has enormous potential for mapping the distribution and

phenology of phytoplankton groups on an unprecedented spatial

and temporal scale in the nBUS. The intention is for this algorithm

to be used for environmental monitoring of these phytoplankton

types to better understand their spatial and temporal dynamics and

environmental controls. In addition, application to the 20-year

MODIS-aqua observation time series will allow an investigation
Frontiers in Marine Science 20
of possible trends in community structure adjustments with

important ecosystem implications for ocean-atmosphere exchange

and energy transfer in support of the fisheries and aquaculture

industries of Namibia.
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Chavez, F. P., and Messié, M. (2009). Progress in oceanography: A comparison of
eastern boundary upwelling ecosystems. Prog. Oceanography. Elsevier Ltd 83 (1–4), 80–
96. doi: 10.1016/j.pocean.2009.07.032

Coble, P. G. (2013). “Colored dissolved organic matter in seawater,” in Subsea optics
and imaging. (Florida: Woodhead Publishing Limited), 98–118. doi: 10.1533/
9780857093523.2.98

Cury, P., and Shannon, L. (2004). Regime shifts in upwelling ecosystems: observed
changes and possible mechanisms in the northern and Southern Benguela. Prog.
Oceanography 60, 223–243. doi: 10.1016/j.pocean.2004.02.007

Dermastia, T. T., Ara, S. D., Dolenc, J., and Mozetiˇ, P.. (2022). Toxicity of the
diatom genus Pseudo-nitzschia (Bacillariophyceae): insights from toxicity tests and
genetic screening in the Northern Adriatic Sea. Toxins 14 (60), 1–17. doi: 10.3390/
toxins14010060

Dijerenge, K. J. (2015). Analysis of marine biotoxins: Paralytic and Lipophilic Shellfish
Toxins in Mussels (Mytilus galloprovincialis) along the Namibian Coastline, University
of Namibia. (Namibia: University of Namibia). https://repository.unam.edu.na/handle/
11070/1466.

Dogliotti, A. I., Schloss, I. R., Almandoz, G. O., and Gagliardini, D. A. (2009).
Evaluation of SeaWiFS and MODIS chlorophyll-a products in the Argentinean
Patagonian Continental Shelf (38° S-55° S). Int. J. Remote Sens. 30 (1), 251–273.
doi: 10.1080/01431160802311133

D’Sa, E. J., and Kim, H. (2017). Surface gradients in dissolved organic matter
absorption and fluorescence properties along the New Zealand sector of the Southern
Ocean. Front. Mar. Sci. 4 (21), 1–14. doi: 10.3389/fmars.2017.00021

Duncombe Rae, C. M. (2005). A demonstration of the hydrographic partition of the
Benguela upwelling ecosystem at 26° 40 ‘ S. Afr. J. Mar. Sci. 27 (3), 617–628.
doi: 10.2989/18142320509504122

Evers-King, H. (2014). Phytoplankton community structure determined through
remote sensing and in situ optical measurements.. PhD thesis. (South Africa: University
of Cape Town).

Fawcett, A., Pitcher, G. C., Bernard, S., Cembella, A. D., and Kudela, R. M. (2007).
Contrasting wind patterns and toxigenic phytoplankton in the Southern Benguela
upwelling system. Mar. Ecol. Prog. Ser. 348, 19–31. doi: 10.3354/meps07027

Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. (1998). Primary
production of the biosphere : integrating terrestrial and oceanic components. Science
281, 237–241. doi: 10.1126/science.281.5374.237
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