798 research outputs found

    An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes

    Get PDF
    The design and development of current and future gas turbine engines for aircraft propulsio

    An Experimental Study of Combustor Exit Profile Shapes on Endwall Heat Transfer in High Pressure Turbine Vanes

    Get PDF
    ABSTRACT The design and development of current and future gas turbine engines for aircraft propulsion have focused on operating the high pressure turbine at increasingly elevated temperatures and pressures. The drive towards thermal operating conditions near theoretical stoichiometric limits as well as increasingly stringent requirements on reducing harmful emissions, both equate to the temperature profiles exiting combustors and entering turbines becoming less peaked than in the past. This drive has placed emphasis on determining how different types of inlet temperature and pressure profiles affect the first stage airfoil endwalls. The goal of the current study was to investigate how different radial profiles of temperature and pressure affect the heat transfer along the vane endwall in a high pressure turbine. Testing was performed in the Turbine Research Facility located at the Air Force Research Laboratory using an inlet profile generator. Results indicate that the convection heat transfer coefficients are influenced by both the inlet pressure profile shape and the location along the endwall. The heat transfer driving temperature for inlet profiles that are nonuniform in temperature is also discussed. INTRODUCTION The performance and durability of the hot section within gas turbine engines are critical operational issues that present many design and research challenges. The hot section of these engines includes both the combustion chamber and the high pressure turbine, the latter of which includes the endwall regions under investigation in this study. Considering that the hot gas temperatures are well above the melting point of the metal turbine hardware, the heat transfer to and aerodynami

    Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling

    Get PDF
    ABSTRACT To maintain acceptable turbine airfoil temperatures, filmcooling is typically used whereby coolant, extracted from the compressor, is injected through component surfaces. In manufacturing a turbine, the first stage vanes are cast in either single airfoils or double airfoils. As the engine is assembled, these singlets or doublets are placed in a turbine disk in which there are inherent gaps between the airfoils. The turbine is designed to allow outflow of high pressure coolant rather than hot gas ingestion. Moreover, it is quite possible that the singlets or doublets become misaligned during engine operation. It has also become of interest to the turbine community as to the effect of corrosion and deposition of particles on component heat transfer. This study uses a largescale turbine vane in which the following two effects are investigated: the effect of a mid-passage gap on endwall filmcooling and the effect of roughness on endwall film-cooling. The results indicate that the mid-passage gap was found to have a significant effect on the coolant exiting from the combustorturbine interface slot. When the gap is misaligned, the results indicate a severe reduction in the film-cooling effectiveness in the case where the pressure side endwall is below the endwall associated with the suction side of the adjacent vane

    Improving Male Partner Involvement in HIV-Positive Women's Care Through Behavioral Change Interventions in Malawi (WeMen Study): A Prospective, Controlled Before-and-After Study

    Get PDF
    Several strategies and interventions have been implemented to improve male partner involvement (MI) in Sub-Saharan Africa, but evidence on successful interventions is scarce. This controlled before-and-after intervention study aims to evaluate the impact of three interventions on male partners' involvement in HIV+ women's care in Malawi. We piloted these three interventions: the organization of a special day for men, the deployment of male champions in communities to increase awareness on MI, and the delivery of an incentive (food package) for couples attending the facility. We observed a significant increase in the number of women accompanied by their partners (from 48.5 to 81.4%) and the number of women feeling safe at home (from 63.5 to 95.2%) after the special day intervention. This outcome increased after the deployment of male champions in communities (from 44.0 to 75.0%). No significant improvement was observed in the site where we delivered the incentive to couples. Our findings showed that the special day for men and the use of male champions might effectively increase the male involvement in the health of their female partners

    Magnetic versus crystal field linear dichroism in NiO thin films

    Full text link
    We have detected strong dichroism in the Ni L2,3L_{2,3} x-ray absorption spectra of monolayer NiO films. The dichroic signal appears to be very similar to the magnetic linear dichroism observed for thicker antiferromagnetic NiO films. A detailed experimental and theoretical analysis reveals, however, that the dichroism is caused by crystal field effects in the monolayer films, which is a non trivial effect because the high spin Ni 3d83d^{8} ground state is not split by low symmetry crystal fields. We present a practical experimental method for identifying the independent magnetic and crystal field contributions to the linear dichroic signal in spectra of NiO films with arbitrary thicknesses and lattice strains. Our findings are also directly relevant for high spin 3d53d^{5} and 3d33d^{3} systems such as LaFeO3_{3}, Fe2_{2}O3_{3}, VO, LaCrO3_{3}, Cr2_{2}O3_{3}, and Mn4+^{4+} manganate thin films

    Electronic and Magnetic Structures of Sr2FeMoO6

    Get PDF
    We have investigated the electronic and magnetic structures of Sr2FeMoO6 employing site-specific direct probes, namely x-ray absorption spectroscopy with linearly and circularly polarized photons. In contrast to some previous suggestions, the results clearly establish that Fe is in the formal trivalent state in this compound. With the help of circularly polarized light, it is unambiguously shown that the moment at the Mo sites is below the limit of detection (< 0.25mu_B), resolving a previous controversy. We also show that the decrease of the observed moment in magnetization measurements from the theoretically expected value is driven by the presence of mis-site disorder between Fe and Mo sites.Comment: To appear in Physical Review Letter

    Magnetic circular dichroism of x-ray absorption spectroscopy at rare-earth L2,3 edges in RE2Fe14B compounds (RE = La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)

    Full text link
    Magnetic circular dichroism (MCD) in the x-ray absorption spectroscopy (XAS) at the L2,3 edges for almost entire series of rare-earth (RE) elements in RE2Fe14B, is studied experimentally and theoretically. By a quantitative comparison of the complicated MCD spectral shapes, we find that (i) the 4f-5d intra-atomic exchange interaction not only induces the spin and orbital polarization of the 5d states, which is vital for the MCD spectra of the electric dipole transition from the 2p core states to the empty 5d conduction band, but also it accompanies a contraction of the radial part of the 5d wave function depending on its spin and orbital state, which results in the enhancement of the 2p-5d dipole matrix element, (ii) there are cases where the spin polarization of the 5d states due to the hybridization with the spin polarized 3d states of surrounding irons plays important roles, and (iii) the electric quadrupole transition from the 2p core states to the magnetic vale! nce 4f states is appreciable at the pre-edge region of the dipole spectrum. Especially, our results evidence that it is important to include the enhancement effect of the dipole matrix element in the correct interpretation of the MCD spectra at the RE L2,3 edges.Comment: 9 pages, 5 figures, 1 table, REVTe

    Magnetism in systems with various dimensionality: A comparison between Fe and Co

    Full text link
    A systematic ab initio study is performed for the spin and orbital moments and for the validity of the sum rules for x-ray magnetic circular dichroism for Fe systems with various dimensionality (bulk, Pt-supported monolayers and monatomic wires, free-standing monolayers and monatomic wires). Qualitatively, the results are similar to those for the respective Co systems, with the main difference that for the monatomic Fe wires the term in the spin sum rule is much larger than for the Co wires. The spin and orbital moments induced in the Pt substrate are also discussed.Comment: 4 page

    Estrogen-Receptor Expression and Function in Thymocytes in Relation to Gender and Age

    Get PDF
    The expression of estrogen receptor (ER) in thymocytes was studied in young, middle-aged, and old (2, 12, and 24 months, respectively) female and male C57BL/6J mice. Western immunoblots prepared from the thymocytes of females of all age groups showed the presence of a 67-kD protein band, which has been associated with the apparent MW of denatured ER. Flow cytometry analysis o,f cells stained with a monoclonal anti-ER antibody (clone 13H2) disclosed ER expression in both females and males of all age groups. In vivo treatment with estradiol (E2) led to an increase in the specific activity of thymic creatine kinase (CK) in the female mice, whereas the male thymocytes responded with an increase in CK activity only on treatment with dihydrotestosterone (DHT). The data show no differences in ER expression between male and females, but the receptor appears not to be functional in males. Interestingly, when estradiol was applied to co-cultures of lymphoid-depleted fetal thymus (FT) explants and bone-marrow cells, or thymocytes, from young and old females, it resulted in increased cellularity of cultures containing cells of the young, and not those of the old. The proportion of CD4/CD8 phenotypes of the developing cells in these cultures was not affected by E2 treatment. These observations provide a new insight into ER expression and function in T-cell development in relation to gender and age

    Satellite holmium M-edge spectra from the magnetic phase via resonant x-ray scattering

    Full text link
    Developing an expression of resonant x-ray scattering (RXS) amplitude which is convenient for investigating the contributions from the higher rank tensor on the basis of a localized electron picture, we analyze the RXS spectra from the magnetic phases of Ho near the M4,5M_{4,5} absorption edges. At the M5M_5 edge in the uniform helical phase, the calculated spectra of the absorption coefficient, the RXS intensities at the first and second satellite spots capture the properties the experimental data possess, such as the spectral shapes and the peak positions. This demonstrates the plausibility of the adoption of the localized picture in this material and the effectiveness of the spectral shape analysis. The latter point is markedly valuable since the azimuthal angle dependence, which is one of the most useful informations RXS can provides, is lacking in the experimental conditions. Then, by focusing on the temperature dependence of the spectral shape at the second satellite spot, we expect that the spectrum is the contribution of the pure rank two profile in the uniform helical and the conical phases while that is dominated by the rank one profile in the intermediate temperature phase, so-called spin slip phase. The change of the spectral shape as a function of temperature indicates a direct evidence of the change of magnetic structures undergoing. Furthermore, we predict that the intensity, which is the same order observed at the second satellite spot, is expected at the fourth satellite spot from the conical phase in the electric dipolar transition.Comment: 24 pages, 5 figure
    corecore