13 research outputs found

    Ovarian cancer G protein-coupled receptor 1 inhibits A549 cells migration through casein kinase 2α intronless gene and neutral endopeptidase

    Get PDF
    Background: We have previously reported that a new intronless gene for casein kinase 2α (CK2α), CSNK2A3, is expressed in human cells. The promoter of the well-known CK2α, CSNK2A1, displays characteristics of a housekeeping gene, whereas CSNK2A3 has a characteristic of a regulated promoter with two TATA boxes and a CAAT box. GPR68, a family of the G protein-coupled receptors, is also known as ovarian cancer G protein-coupled receptor 1 (OGR1). In the current study, we analyzed the roles of CK2α genes and neutral endopeptidase (NEP), a key enzyme that influences a variety of malignancies, in the OGR1-induced inhibition of A549 cell migration. Methods: We analyzed the transcript expressions of both the CK2α genes (CSNK2A1 and CSNK2A3) and NEP upon OGR1 overexpression. Protein expression of CK2α and NEP were also analyzed. We further elucidated the functional roles of both CK2α and NEP in the OGR1-induced inhibition of A549 cell migration in vitro using a wound-healing assay. We also analyzed the molecular mechanisms involved in the OGR1-induced inhibition of lung cancer cell migration. Results: The findings of this study showed that OGR1 upregulated the expression of CSNK2A3 but not CSNK2A1 in the A549 cells. The findings further suggested OGR1 also upregulates the expression of NEP. The OGR1-induced inhibition of A549 cell migration was abrogated completely by inhibition of CK2α activity, whereas partial abrogation (~ 30%) was observed in the presence of NEP inhibition. The results also revealed that OGR1 regulates CSNK2A3 via activation of Rac1/cdc42 and MAPKs pathways. CK2 is ubiquitously expressed, and in contrast, is believed to be a constitutively active enzyme, and its regulation appears to be independent of known second messengers. Conclusion: In the current study, we report for the first time the OGR1-induced regulation of CSNK2A3, CK2αP, and NEP in A549 cancer cells. Our study also decoded the downstream cellular proteins of OGR1 as well as the molecular mechanism involved in OGR1-induced inhibition of A549 cell migration. The findings of this research suggest the potential therapeutic targets to inhibit lung cancer progression

    Anticancer properties and enhancement of therapeutic potential of cisplatin by leaf extract of Zanthoxylum armatum DC

    Get PDF
    BACKGROUND: Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylum armatum DC. (ZALE) induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin). This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs. RESULTS: ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP) cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK) pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK), p38 and c-Jun N-ter-minal kinase (JNK). Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE. CONCLUSION: Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment

    Planispine A Sensitized Cancer Cells to Cisplatin by Inhibiting the Fanconi Anemia Pathway

    No full text
    The use of cisplatin as a chemotherapeutic drug is impeded by the development of drug resistance. Combination therapies of a chemosensitizer for cisplatin have been studied, but with little success, and the search for an effective combination therapy is continuing. Our earlier reports have shown that Zanthoxylum armatum DC. extract enhances the apoptotic effect of cisplatin in cancer cell lines. In this study, we purified and identified the bioactive phytocompound through bio-assay-guided purification, using column chromatography and HPLC. Chemical characterization using NMR and mass spectrometry revealed the compound as planispine A, with molecular structure C25H30O6 and molecular weight, 426.16 g/mol. Planispine A was found to inhibit cancer cell proliferation in a dose-dependent manner and to sensitize the cancer cells to cisplatin-augmented apoptotic cell death, in a caspase-dependent manner. A combination of planispine A and cisplatin induced S-phase cell cycle arrest, and reduced the expression of survival proteins such as cyclin D1. Interestingly, planispine A inhibits the Fanconi anemia pathway, as shown by reduced FANCD2 foci formation and FANCD2 monoubiquitination, which revealed the molecular mechanism of chemo-sensitization of cancer cells to cisplatin. Evaluation of this combination therapy in cisplatin-resistant tumors may lead to more efficient cisplatin treatment

    BLAP18/RMI2, a novel OB-fold-containing protein, is an essential component of the Bloom helicase–double Holliday junction dissolvasome

    No full text
    Bloom Syndrome is an autosomal recessive cancer-prone disorder caused by mutations in the BLM gene. BLM encodes a DNA helicase of the RECQ family, and associates with Topo IIIα and BLAP75/RMI1 (BLAP for BLM-associated polypeptide/RecQ-mediated genome instability) to form the BTB (BLM–Topo IIIα–BLAP75/RMI1) complex. This complex can resolve the double Holliday junction (dHJ), a DNA intermediate generated during homologous recombination, to yield noncrossover recombinants exclusively. This attribute of the BTB complex likely serves to prevent chromosomal aberrations and rearrangements. Here we report the isolation and characterization of a novel member of the BTB complex termed BLAP18/RMI2. BLAP18/RMI2 contains a putative OB-fold domain, and several lines of evidence suggest that it is essential for BTB complex function. First, the majority of BLAP18/RMI2 exists in complex with Topo IIIα and BLAP75/RMI1. Second, depletion of BLAP18/RMI2 results in the destabilization of the BTB complex. Third, BLAP18/RMI2-depleted cells show spontaneous chromosomal breaks and are sensitive to methyl methanesulfonate treatment. Fourth, BLAP18/RMI2 is required to target BLM to chromatin and for the assembly of BLM foci upon hydroxyurea treatment. Finally, BLAP18/RMI2 stimulates the dHJ resolution capability of the BTB complex. Together, these results establish BLAP18/RMI2 as an essential member of the BTB dHJ dissolvasome that is required for the maintenance of a stable genome

    Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M

    No full text
    FANCM is a component of the Fanconi anemia (FA) core complex and one FA patient (EUFA867) with biallelic mutations in FANCM has been described. Strikingly, we found that EUFA867 also carries biallelic mutations in FANCA. After correcting the FANCA defect in EUFA867 lymphoblasts, a “clean” FA-M cell line was generated. These cells were hypersensitive to mitomycin C, but unlike cells defective in other core complex members, FANCM−/− cells were proficient in monoubiquitinating FANCD2 and were sensitive to the topoisomerase inhibitor camptothecin, a feature shared only with the FA subtype D1 and N. In addition, FANCM−/− cells were sensitive to UV light. FANCM and a C-terminal deletion mutant rescued the cross-linker sensitivity of FANCM−/− cells, whereas a FANCM ATPase mutant did not. Because both mutants restored the formation of FANCD2 foci, we conclude that FANCM functions in an FA core complex–dependent and –independent manner
    corecore