1,386 research outputs found
Localization in Strongly Chaotic Systems
We show that, in the semiclassical limit and whenever the elements of the
Hamiltonian matrix are random enough, the eigenvectors of strongly chaotic
time-independent systems in ordered bases can on average be exponentially
localized across the energy shell and decay faster than exponentially outside
the energy shell. Typically however, matrix elements are strongly correlated
leading to deviations from such behavior.Comment: RevTeX, 5 pages + 3 postscript figures, submitted to Phys. Rev. Let
Editorial: NK Cell Subsets in Health and Disease: New Developments
Natural killer (NK) cells were discovered ca 1975, as the first group of lymphoid cells that were neither T cells nor B cells. Since then, the dissection of the biology of NK cells has been growing exponentially with many seminal discoveries from the identification of MHC class I-specific inhibitory receptors to the discovery of receptor\u2013ligand pairs involved in NK cell activation and to the manipulation of NK cells in cancer.
In this research topic, we asked a group of thought leaders in NK cell biology to review recent advances in their origins and biology, and their roles in cancer, infection, and inflammation.
Together, these 25 articles provide a timely survey of NK cells as critical immunologic components of health and disease. They will hopefully prompt further dialog and developments in basic and translational immunology
Strain-Dependence of Surface Diffusion: Ag on Ag(111) and Pt(111)
Using density-functional theory with the local-density approximation and the
generalized gradient approximation we compute the energy barriers for surface
diffusion for Ag on Pt(111), Ag on one monolayer of Ag on Pt(111), and Ag on
Ag(111). The diffusion barrier for Ag on Ag(111) is found to increase linearly
with increasing lattice constant. We also discuss the reconstruction that has
been found experimentally when two Ag layers are deposited on Pt(111). Our
calculations explain why this strain driven reconstruction occurs only after
two Ag layers have been deposited.Comment: 4 pages, 3 figures, Phys. Rev. B 55 (1997), in pres
Some Data On Allele Diversity At Orthologous Candidate Genes In GCP Crops
The ADOC project (GCP 2006-02) aimed to characterize allelic diversity at orthologous loci of candidate genes for drought tolerance in seven GCP crops (rice, barley, sorghum, bean, chickpea, cassava and potato), working on reference collections of around 300 accessions for each crop. Six gene families (ERECTA, DREB, SS, SPS, ASR and VIN) were selected as the initial subset of target genes. Except the DREB gene family, for which a specific focus has been given to DREB2A, and the SPS gene family in cereals, for which only the Os01g69030 orthology group was studied, they represent a set of relatively small gene families acting at different levels of the drought stress response (transcriptional regulation, carbohydrate metabolism…) for which a comparative analysis of gene families was undertaken. Obtaining complete gene families was easier in whole sequenced genomes like rice and sorghum. Polyploidy and heterozygosity induced difficulties in analyzing data for cassava and potato; However sequences for a few genes were obtained and analyzed for SNP diversity across all species. Population structure influenced partially haplotype patterns. A large range of haplotype diversity was found and the degrees of this differed between species. Different patterns and range of sequence diversity were found within gene families and between species for orthologous genes. For a few genes, computation of a sequence-based neutrality test suggested selection events acting at the species and/or subgroup level
Global solutions of a free boundary problem for selfgravitating scalar fields
The weak cosmic censorship hypothesis can be understood as a statement that
there exists a global Cauchy evolution of a selfgravitating system outside an
event horizon. The resulting Cauchy problem has a free null-like inner
boundary. We study a selfgravitating spherically symmetric nonlinear scalar
field. We show the global existence of a spacetime with a null inner boundary
that initially is located outside the Schwarzschild radius or, more generally,
outside an apparent horizon. The global existence of a patch of a spacetime
that is exterior to an event horizon is obtained as a limiting case.Comment: 31 pages, revtex, to appear in the Classical and Quantum Gravit
Mildred Dresselhaus and Solid State Pedagogy at MIT
Mildred Dresselhaus is known for her influential research on the physics of carbon. Her wide‐ranging influence as a physics teacher, although well‐known to her students, has been less thoroughly examined. Exploring how Dresselhaus grew into her role teaching solid state physics at MIT reveals much about how that subfield evolved
On the Resolution of the Time-Like Singularities in Reissner-Nordstrom and Negative-Mass Schwarzschild
Certain time-like singularities are shown to be resolved already in classical
General Relativity once one passes from particle probes to scalar waves. The
time evolution can be defined uniquely and some general conditions for that are
formulated. The Reissner-Nordstrom singularity allows for communication through
the singularity and can be termed "beam splitter" since the transmission
probability of a suitably prepared high energy wave packet is 25%. The high
frequency dependence of the cross section is w^{-4/3}. However, smooth
geometries arbitrarily close to the singular one require a finite amount of
negative energy matter. The negative-mass Schwarzschild has a qualitatively
different resolution interpreted to be fully reflecting. These 4d results are
similar to the 2d black hole and are generalized to an arbitrary dimension d>4.Comment: 47 pages, 5 figures. v2: See end of introduction for an important
note adde
- …