364 research outputs found

    Compressed Online Dictionary Learning for Fast fMRI Decomposition

    Get PDF
    We present a method for fast resting-state fMRI spatial decomposi-tions of very large datasets, based on the reduction of the temporal dimension before applying dictionary learning on concatenated individual records from groups of subjects. Introducing a measure of correspondence between spatial decompositions of rest fMRI, we demonstrates that time-reduced dictionary learning produces result as reliable as non-reduced decompositions. We also show that this reduction significantly improves computational scalability

    Social-sparsity brain decoders: faster spatial sparsity

    Get PDF
    Spatially-sparse predictors are good models for brain decoding: they give accurate predictions and their weight maps are interpretable as they focus on a small number of regions. However, the state of the art, based on total variation or graph-net, is computationally costly. Here we introduce sparsity in the local neighborhood of each voxel with social-sparsity, a structured shrinkage operator. We find that, on brain imaging classification problems, social-sparsity performs almost as well as total-variation models and better than graph-net, for a fraction of the computational cost. It also very clearly outlines predictive regions. We give details of the model and the algorithm.Comment: in Pattern Recognition in NeuroImaging, Jun 2016, Trento, Italy. 201

    Mapping cognitive ontologies to and from the brain

    Get PDF
    Imaging neuroscience links brain activation maps to behavior and cognition via correlational studies. Due to the nature of the individual experiments, based on eliciting neural response from a small number of stimuli, this link is incomplete, and unidirectional from the causal point of view. To come to conclusions on the function implied by the activation of brain regions, it is necessary to combine a wide exploration of the various brain functions and some inversion of the statistical inference. Here we introduce a methodology for accumulating knowledge towards a bidirectional link between observed brain activity and the corresponding function. We rely on a large corpus of imaging studies and a predictive engine. Technically, the challenges are to find commonality between the studies without denaturing the richness of the corpus. The key elements that we contribute are labeling the tasks performed with a cognitive ontology, and modeling the long tail of rare paradigms in the corpus. To our knowledge, our approach is the first demonstration of predicting the cognitive content of completely new brain images. To that end, we propose a method that predicts the experimental paradigms across different studies.Comment: NIPS (Neural Information Processing Systems), United States (2013

    On spatial selectivity and prediction across conditions with fMRI

    Get PDF
    Researchers in functional neuroimaging mostly use activation coordinates to formulate their hypotheses. Instead, we propose to use the full statistical images to define regions of interest (ROIs). This paper presents two machine learning approaches, transfer learning and selection transfer, that are compared upon their ability to identify the common patterns between brain activation maps related to two functional tasks. We provide some preliminary quantification of these similarities, and show that selection transfer makes it possible to set a spatial scale yielding ROIs that are more specific to the context of interest than with transfer learning. In particular, selection transfer outlines well known regions such as the Visual Word Form Area when discriminating between different visual tasks.Comment: PRNI 2012 : 2nd International Workshop on Pattern Recognition in NeuroImaging, London : United Kingdom (2012

    HRF estimation improves sensitivity of fMRI encoding and decoding models

    Get PDF
    Extracting activation patterns from functional Magnetic Resonance Images (fMRI) datasets remains challenging in rapid-event designs due to the inherent delay of blood oxygen level-dependent (BOLD) signal. The general linear model (GLM) allows to estimate the activation from a design matrix and a fixed hemodynamic response function (HRF). However, the HRF is known to vary substantially between subjects and brain regions. In this paper, we propose a model for jointly estimating the hemodynamic response function (HRF) and the activation patterns via a low-rank representation of task effects.This model is based on the linearity assumption behind the GLM and can be computed using standard gradient-based solvers. We use the activation patterns computed by our model as input data for encoding and decoding studies and report performance improvement in both settings.Comment: 3nd International Workshop on Pattern Recognition in NeuroImaging (2013

    CanICA: Model-based extraction of reproducible group-level ICA patterns from fMRI time series

    Get PDF
    Spatial Independent Component Analysis (ICA) is an increasingly used data-driven method to analyze functional Magnetic Resonance Imaging (fMRI) data. To date, it has been used to extract meaningful patterns without prior information. However, ICA is not robust to mild data variation and remains a parameter-sensitive algorithm. The validity of the extracted patterns is hard to establish, as well as the significance of differences between patterns extracted from different groups of subjects. We start from a generative model of the fMRI group data to introduce a probabilistic ICA pattern-extraction algorithm, called CanICA (Canonical ICA). Thanks to an explicit noise model and canonical correlation analysis, our method is auto-calibrated and identifies the group-reproducible data subspace before performing ICA. We compare our method to state-of-the-art multi-subject fMRI ICA methods and show that the features extracted are more reproducible

    Brain covariance selection: better individual functional connectivity models using population prior

    Get PDF
    Spontaneous brain activity, as observed in functional neuroimaging, has been shown to display reproducible structure that expresses brain architecture and carries markers of brain pathologies. An important view of modern neuroscience is that such large-scale structure of coherent activity reflects modularity properties of brain connectivity graphs. However, to date, there has been no demonstration that the limited and noisy data available in spontaneous activity observations could be used to learn full-brain probabilistic models that generalize to new data. Learning such models entails two main challenges: i) modeling full brain connectivity is a difficult estimation problem that faces the curse of dimensionality and ii) variability between subjects, coupled with the variability of functional signals between experimental runs, makes the use of multiple datasets challenging. We describe subject-level brain functional connectivity structure as a multivariate Gaussian process and introduce a new strategy to estimate it from group data, by imposing a common structure on the graphical model in the population. We show that individual models learned from functional Magnetic Resonance Imaging (fMRI) data using this population prior generalize better to unseen data than models based on alternative regularization schemes. To our knowledge, this is the first report of a cross-validated model of spontaneous brain activity. Finally, we use the estimated graphical model to explore the large-scale characteristics of functional architecture and show for the first time that known cognitive networks appear as the integrated communities of functional connectivity graph.Comment: in Advances in Neural Information Processing Systems, Vancouver : Canada (2010

    Second order scattering descriptors predict fMRI activity due to visual textures

    Get PDF
    Second layer scattering descriptors are known to provide good classification performance on natural quasi-stationary processes such as visual textures due to their sensitivity to higher order moments and continuity with respect to small deformations. In a functional Magnetic Resonance Imaging (fMRI) experiment we present visual textures to subjects and evaluate the predictive power of these descriptors with respect to the predictive power of simple contour energy - the first scattering layer. We are able to conclude not only that invariant second layer scattering coefficients better encode voxel activity, but also that well predicted voxels need not necessarily lie in known retinotopic regions.Comment: 3nd International Workshop on Pattern Recognition in NeuroImaging (2013
    corecore