11 research outputs found

    Alternate Fuels Demonstration Project

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu

    EpCAM (CD326) is differentially expressed in craniopharyngioma subtypes and Rathke’s cleft cysts

    No full text
    The epithelial cell adhesion molecule (EpCAM) is a type I glycoprotein located on the surface of epithelial cells. It is strongly expressed in many neoplasms and already used in the diagnosis and distinction of various tumour subtypes. Comparative studies about EpCAM expression in cystic sellar lesions are lacking. Therefore, we analysed its distribution pattern in adamantinomatous (aCP) and papillary (pCP) craniopharyngiomas (CP) and Rathke’s Cleft Cysts (RCC) using immunohistochemistry and gene expression profiling. Whereas the protein was not detectable in pCP (n = 10), all aCP (n = 64) showed distinct staining patterns. The vast majority of RCC (n = 10) also appeared positive, but these displayed notably lower labeling scores. Additionally, significantly higher mRNA levels were detectable in aCP (n = 19) when compared to pCP (n = 10) (p = 9.985−8). Furthermore, pediatric aCP cases, in general, exhibited stronger EpCAM staining levels compared to adult ones (p = 0.015). However, we were not able to verify this result on mRNA level. In summary, our findings demonstrate that EpCAM can be used as an additional distinction-marker for cystic lesions of the sellar region. Its unknown function in aCP and the presence of an approved monoclonal bispecific trifunctional antibody for cancer therapy are interesting starting points for further studies

    Results from MEA testing at the CO2 Technology Centre Mongstad. Part II: Verification of baseline results

    No full text
    AbstractIndependent verification protocol (IVP) work has been conducted at the CO2 Technology Centre Mongstad (TCM DA) during treatment of flue gas from a natural gas-fired combined heat and power (CHP) plant. The testing applied an aqueous 30 wt% monoethanolamine (MEA) solvent system treating flue gases with a flow rate of about 47.000 Sm3/hr and a CO2 content of about 3.5%. The CO2 capture rate was about 90% and the thermal steam consumption was about 4.1 GJ/t CO2. Emissions of MEA were very low and MEA-related degradation products were all below detection levels, and all within the emission limits set by the Norwegian environmental authorities. The current work may be considered an independently verified baseline for a non- proprietary post-combustion amine based solvent system carried out at an industrial-scale plant facility.Long-term performance indices, such as material corrosion, MEA solvent degradation, etc., have not been considered in the current IVP work. Additional minor process adaption to the aqueous MEA solvent system, such as increased MEA concentrations, the use of anti-foam solutions, etc., may lead to lower thermal steam consumptions than aforementioned

    Determining adsorption geometry, bonding, and translational pathways of a metal-organic complex on an oxide surface: Co-salen on NiO(001)

    No full text
    Individual molecules of Co-Salen, a small chiral paramagnetic metal-organic complex, deposited on NiO(001) were imaged with noncontact atomic force microscopy (NC-AFM) using metallic Cr coated tips. Experimentally, we simultaneously resolve both the molecule and the individual surface ions. Images recorded at low temperatures show that the Co-Salen molecules are aligned slightly away from the ⟨110⟩ directions of the surface and that the Co center of the molecule is located above a bright spot in atomically resolved images of the surface. Density functional theory calculations predict that the molecule adsorbs with the central Co atom on top of an oxygen ion and is in its lowest energy configuration aligned either + or −4° away from the ⟨110⟩ directions, dependent on the chirality of the molecule. Combining theoretical predictions and experimental data allows us to identify bright spots in NC-AFM images as oxygen sites on NiO(001) and hence determine the exact adsorption geometry and position of the molecule. Additionally, we observed tip-induced translations of the Co-Salen molecules along ⟨110⟩ directions on the substrate, which corresponds to the lowest energy pathway for diffusion. A comparison of these results with theoretical calculations and previously published experimental data for Co-Salen on the (001) surface of bulk NaCl highlights differences in the character of adsorption of individual molecules and the ensuing growth of Co-Salen thin films on these substrates. © 2012 American Chemical Society
    corecore