15 research outputs found

    Expanding distribution of lethal amphibian fungus Batrachochytrium salamandrivorans in Europe

    Get PDF
    Emerging fungal diseases can drive amphibian species to local extinction. During 2010-2016, we examined 1,921 urodeles in 3 European countries. Presence of the chytrid fungus Batrachochytrium salamandrivorans at new locations and in urodeles of different species expands the known geographic and host range of the fungus and underpins its imminent threat to biodiversity

    Landscape epidemiology of Batrachochytrium salamandrivorans : reconciling data limitations and conservation urgency

    Get PDF
    Starting in 2010, rapid-fire salamander (Salamandra salamandra) population declines in northwestern Europe heralded the emergence of Batrachochytrium salamandrivorans (Bsal), a salamander-pathogenic chytrid fungus. Bsal poses an imminent threat to global salamander diversity owing to its wide host range, high pathogenicity, and long-term persistence in ecosystems. While there is a pressing need to develop further research and conservation actions, data limitations inherent to recent pathogen emergence obscure necessary insights into Bsal disease ecology. Here, we use a hierarchical modeling framework to describe Bsal landscape epidemiology of outbreak sites in light of these methodological challenges. Using model selection and machine learning, we find that Bsal presence is associated with humid and relatively cool, stable climates. Outbreaks are generally located in areas characterized by low landscape heterogeneity and low steepness of slope. We further find an association between Bsal presence and high trail density, suggesting that human-mediated spread may increase risk for spillover between populations. We then use distribution modeling to show that favorable conditions occur in lowlands influenced by the North Sea, where increased survey effort is needed to determine how Bsal impacts local newt populations, but also in hill- and mountain ranges in northeastern France and the lower half of Germany. Finally, connectivity analyses suggest that these hill- and mountain ranges may act as stepping stones for further spread southward. Our results provide initial insight into regional environmental conditions underlying Bsal epizootics, present updated invasibility predictions for northwestern Europe, and lead us to discuss a wide variety of potential survey and research actions needed to advance future conservation and mitigation efforts

    Gait among Patients with Myotonic Dystrophy Type 1: A Three‑Dimensional Motion Analysis Study

    No full text
    Objective: The objective was to characterize the gait abnormalities in myotonic dystrophy type 1 patients. Material and Methods: Outcomes variables were kinematic and kinetic parameters, timing of muscles, mechanical work and energy cost, and the motor function measure. Results: Despite a high cadence and a low ankle range of motion ratio, ankle extension power, and first extension moment of the knee during the stance, the mechanical work and energy cost were normal. The duration of electromyography activation of the gastrocnemius lateralis (GL) muscle was abnormally long. Conclusion: The hypothesis of a myotonic activity of the GL during the swing phase should be investigated

    Divergent population responses following salamander mass mortalities and declines driven by the emerging pathogen Batrachochytrium salamandrivorans

    Full text link
    Understanding wildlife responses to novel threats is vital in counteracting biodiversity loss. The emerging pathogen Batrachochytrium salamandrivorans (Bsal) causes dramatic declines in European salamander populations, and is considered an imminent threat to global amphibian biodiversity. However, real-life disease outcomes remain largely uncharacterized. We performed a multidisciplinary assessment of the longer-term impacts of Bsal on highly susceptible fire salamander (Salamandra salamandra) populations, by comparing four of the earliest known outbreak sites to uninfected sites. Based on large-scale monitoring efforts, we found population persistence in strongly reduced abundances to over a decade after Bsal invasion, but also the extinction of an initially small-sized population. In turn, we found that host responses varied, and Bsal detection remained low, within surviving populations. Demographic analyses indicated an ongoing scarcity of large reproductive adults with potential for recruitment failure, while spatial comparisons indicated a population remnant persisting within aberrant habitat. Additionally, we detected no early signs of severe genetic deterioration, yet nor of increased host resistance. Beyond offering additional context to Bsal-driven salamander declines, results highlight how the impacts of emerging hypervirulent pathogens can be unpredictable and vary across different levels of biological complexity, and how limited pathogen detectability after population declines may complicate surveillance efforts

    The equilibrative nucleoside transporter ENT1 is critical for nucleotide homeostasis and optimal erythropoiesis

    No full text
    This is a related article to: Nucleoside ENTry modulates erythropoiesis (cf ci-dessous)International audienceAbstract The tight regulation of intracellular nucleotides is critical for the self-renewal and lineage specification of hematopoietic stem cells (HSCs). Nucleosides are major metabolite precursors for nucleotide biosynthesis and their availability in HSCs is dependent on their transport through specific membrane transporters. However, the role of nucleoside transporters in the differentiation of HSCs to the erythroid lineage and in red cell biology remains to be fully defined. Here, we show that the absence of the equilibrative nucleoside transporter (ENT1) in human red blood cells with a rare Augustine-null blood type is associated with macrocytosis, anisopoikilocytosis, an abnormal nucleotide metabolome, and deregulated protein phosphorylation. A specific role for ENT1 in human erythropoiesis was demonstrated by a defective erythropoiesis of human CD34+ progenitors following short hairpin RNA-mediated knockdown of ENT1. Furthermore, genetic deletion of ENT1 in mice was associated with reduced erythroid progenitors in the bone marrow, anemia, and macrocytosis. Mechanistically, we found that ENT1-mediated adenosine transport is critical for cyclic adenosine monophosphate homeostasis and the regulation of erythroid transcription factors. Notably, genetic investigation of 2 ENT1null individuals demonstrated a compensation by a loss-of-function variant in the ABCC4 cyclic nucleotide exporter. Indeed, pharmacological inhibition of ABCC4 in Ent1−/− mice rescued erythropoiesis. Overall, our results highlight the importance of ENT1-mediated nucleotide metabolism in erythropoiesis
    corecore