533 research outputs found

    Measurement of thermal conductance of silicon nanowires at low temperature

    Full text link
    We have performed thermal conductance measurements on individual single crystalline silicon suspended nanowires. The nanowires (130 nm thick and 200 nm wide) are fabricated by e-beam lithography and suspended between two separated pads on Silicon On Insulator (SOI) substrate. We measure the thermal conductance of the phonon wave guide by the 3 method. The cross-section of the nanowire approaches the dominant phonon wavelength in silicon which is of the order of 100 nm at 1K. Above 1.3K the conductance behaves as T3, but a deviation is measured at the lowest temperature which can be attributed to the reduced geometry

    A case for variational geomagnetic data assimilation: insights from a one-dimensional, nonlinear, and sparsely observed MHD system

    Get PDF
    Secular variations of the geomagnetic field have been measured with a continuously improving accuracy during the last few hundred years, culminating nowadays with satellite data. It is however well known that the dynamics of the magnetic field is linked to that of the velocity field in the core and any attempt to model secular variations will involve a coupled dynamical system for magnetic field and core velocity. Unfortunately, there is no direct observation of the velocity. Independently of the exact nature of the above-mentioned coupled system -- some version being currently under construction -- the question is debated in this paper whether good knowledge of the magnetic field can be translated into good knowledge of core dynamics. Furthermore, what will be the impact of the most recent and precise geomagnetic data on our knowledge of the geomagnetic field of the past and future? These questions are cast into the language of variational data assimilation, while the dynamical system considered in this paper consists in a set of two oversimplified one-dimensional equations for magnetic and velocity fields. This toy model retains important features inherited from the induction and Navier-Stokes equations: non-linear magnetic and momentum terms are present and its linear response to small disturbances contains Alfvén waves. It is concluded that variational data assimilation is indeed appropriate in principle, even though the velocity field remains hidden at all times; it allows us to recover the entire evolution of both fields from partial and irregularly distributed information on the magnetic field. This work constitutes a first step on the way toward the reassimilation of historical geomagnetic data and geomagnetic forecast

    Contacting individual Fe(110) dots in a single electron-beam lithography step

    Full text link
    We report on a new approach, entirely based on electron-beam lithography technique, to contact electrically, in a four-probe scheme, single nanostructures obtained by self-assembly. In our procedure, nanostructures of interest are localised and contacted in the same fabrication step. This technique has been developed to study the field-induced reversal of an internal component of an asymmetric Bloch domain wall observed in elongated structures such as Fe(110) dots. We have focused on the control, using an external magnetic field, of the magnetisation orientation within N\'eel caps that terminate the domain wall at both interfaces. Preliminary magneto-transport measurements are discussed demonstrating that single Fe(110) dots have been contacted.Comment: 5 page

    New Transcriptional Reporters to Quantify and Monitor PPAR γ

    Get PDF
    The peroxisome-proliferator-activated-receptor-γ (PPARγ) is a member of the nuclear receptor superfamily that plays a critical role in diverse biological processes, including adipogenesis, lipid metabolism, and placental development. To study the activity of PPARγ, we constructed two new reporter genes: a fluorescent GFP-tagged histone-2B (PPRE-H2B-eGFP) and a secreted nanoluciferase (PPRE-pNL1.3[secNluc]). This study demonstrates their usage to monitor PPARγ activity in different cell types and screen for PPARγ’s potential ligands

    Co-design of an in-line holographic microscope with enhanced axial resolution: selective filtering digital holography

    No full text
    International audienceCommon-path digital in-line holography is considered as a valuable 3D diagnostic techniques for a wide range of applications. This configuration is cost effective and relatively immune to variation in the experimental environment. Nevertheless, due to its common-path geometry, the signal to noise-ratio of the acquired hologram is weak as most of the detector (i.e. CCD/CMOS sensor) dynamics is occupied by the reference field signal, whose energy is orders of magnitude higher than the field scattered by the imaged object. As it is intrinsically impossible to modify the ratio of energy of reference to the object field, we propose a co-design approach (Optics/Data Processing) to tackle this issue. The reference to object field ratio is adjusted by adding a 4-f device to a conventional in-line holographic setup , making it possible to reduce the weight of the reference field while keeping the object field almost constant. Theoretical analysis of the Cràmer-Rao lower bounds of the corresponding imaging model illustrate the advantages of this approach. These lower bounds can be asymptotically reached using a parametric inverse problems reconstruction. This implementation results in a 60 % gain in axial localization accuracy (for of 100 µm diameter spherical objects) compared to a classical in-line holography setup

    Reconstruction of the rose of directions from a digital micro-hologram of fibers

    No full text
    International audienceDigital holography makes it possible to acquire quickly the interference patterns of objects spread in a volume. The digital processing of the fringes is still too slow to achieve on line analysis of the holograms. We describe a new approach to obtain information on the direction of illuminated objects. The key idea is to avoid reconstruction of the volume followed by classical three-dimensional image processing. The hologram is processed using a global analysis based on autocorrelation. A fundamental property of diffraction patterns leads to an estimate of the mean geometric-covariogram (MGC) of the objects projections. The rose of directions is connected with the MGC through an inverse problem. In the general case, only the 2D rose of the object projections can be reconstructed. The further assumption of unique-size objects gives access with the knowledge of this size to the 3D direction information. An iterative scheme is suggested to reconstruct the 3D rose in this special case. Results are provided on holograms of paper fibers

    Twin-image noise reduction by phase retrieval in in-line digital holography

    No full text
    14 pagesInternational audienceIn-line digital holography conciles the applicative interest of a simple optical set-up with the speed, low cost and potential of digital reconstruction. We address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin-image cannot be carried out as in off-axis holography. Applications in digital holography of particle fields greatly depend on its suppression to reach greater particle concentrations, keeping a sufficient signal to noise ratio in reconstructed images. We describe in this paper methods to improve numerically the reconstructed images by twin-image reduction. ©2005 COPYRIGHT SPI

    In-line particle holography with an astigmatic beam: set-up self-calibration using an "inverse problems" approach

    No full text
    11 pagesInternational audienceThe use of digital in-line holography for the characterization of confined flows in cylindrical geometry confinements (e.g. cylindrical pipe or cylindrical capillaries) is discussed. Due to cylindrical geometry of the walls, the illuminating laser wave can be strongly astigmatic, which renders the use of classical reconstruction techniques impossible. Contrary to plane wave holography set-up, the diffraction pattern of the particles strongly depends on the axial distance of the latter to the entry face of the confinement structure. To address this reconstruction issue, we propose to use an "inverse problems" approach. This approach amounts to finding the best match (least squares solution) between a diffraction pattern model and the captured hologram. For this purpose, a direct imaging model for astigmatic holograms, based on the use of transfer matrices is presented and validated by comparing experimental and simulated holograms. The accuracy of the "inverse problems" reconstruction is then used to calibrate the experimental set-up adjustable parameters. Finally, the approach is tested through experimental astigmatic hologram reconstruction, thus paving the way to its use in pipe flow studies

    Numerical suppression of the twin-image in in-line holography of a volume of micro-objects

    No full text
    This paper was published in Measurement Science and Technology and is made available as an electronic reprint with the permission of IOP. The paper can be found at the following URL on the IOP website: http://www.iop.org/EJ/journal/MSTInternational audienceWe address the twin-image problem that arises in holography due to the lack of phase information in intensity measurements. This problem is of great importance in in-line holography where spatial elimination of the twin image cannot be carried out as in off-axis holography. A unifying description of existing digital suppression methods is given in the light of deconvolution techniques. Holograms of objects spread in 3D cannot be processed through available approaches. We suggest an iterative algorithm and demonstrate its efficacy on both simulated and real data. This method is suitable to enhance the reconstructed images from a digital hologram of small objects
    corecore