1,191 research outputs found

    Morphology changes in the evolution of liquid two-layer films

    Full text link
    We consider two thin layers of immiscible liquids on a heated solid horizontal substrate. The free liquid-liquid and liquid-gas interfaces of such a two-layer (or bilayer) liquid film may be unstable due to effective molecular interactions or the Marangoni effect. Using a long wave approximation we derive coupled evolution equations for the interafce profiles for a general non-isothermal situation allowing for slip at the substrate. Linear and nonlinear analyses are performed for isothermal ultrathin layers below 100 nm thickness under the influence of destabilizing long-range and stabilizing short-range interactions. Flat films may be unstable to varicose, zigzag or mixed modes. During the long-time evolution the nonlinear mode type can change via switching between two different branches of stable stationary solutions or via coarsening along a single such branch.Comment: 14 eps figures and 1 tex fil

    Conditions for duality between fluxes and concentrations in biochemical networks

    Get PDF
    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. That is, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes

    A community-driven global reconstruction of human metabolism

    Get PDF
    Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/

    Robust Selling Times in Adaptive Portfolio Management

    Get PDF
    Traditional techniques in portfolio management rely on the precise knowledge of the underlying probability distributions; in practice, however, such information is difficult to obtain because multiple factors affect stock prices on a daily basis and unexpected events might affect the price dynamics. To address this issue, we propose an approach to dynamic portfolio management based on the sequential update of stock price forecasts in a robust optimization setting, where the updating process is driven by the historical observations. Forecasts are updated using only the most recent data when the stock price differs significantly from predictions. In this work, we present a robust framework to optimal selling time theory. We introduce a wait-to-decide period, and allow actual price movements to drive the best decision in response to a bad investment. Numerical results illustrate our strategy, which requires less frequent updating of the problem parameters than in the traditional approach while exhibiting promising performance
    • …
    corecore