17 research outputs found

    Spatial modeling of the 3D morphology of hybrid polymer-ZnO solar cells, based on electron tomography data

    Get PDF
    A spatial stochastic model is developed which describes the 3D nanomorphology of composite materials, being blends of two different (organic and inorganic) solid phases. Such materials are used, for example, in photoactive layers of hybrid polymer zinc oxide solar cells. The model is based on ideas from stochastic geometry and spatial statistics. Its parameters are fitted to image data gained by electron tomography (ET), where adaptive thresholding and stochastic segmentation have been used to represent morphological features of the considered ET data by unions of overlapping spheres. Their midpoints are modeled by a stack of 2D point processes with a suitably chosen correlation structure, whereas a moving-average procedure is used to add the radii of spheres. The model is validated by comparing physically relevant characteristics of real and simulated data, like the efficiency of exciton quenching, which is important for the generation of charges and their transport toward the electrodes.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS468 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Hyperbranched Quasi-1D TiO2 Nanostructure for Hybrid Organic-Inorganic Solar Cells

    Get PDF
    The performance of hybrid solar cells is strongly affected by the device morphology. In this work we demonstrate a Poly(3-hexylthiophene-2,5-diyl)/TiO2 hybrid solar cell where the TiO2 photoanode comprises an array of tree-like hyperbranched quasi-1D nanostructures self-assembled from the gas phase. This advanced architecture enables us to increase the power conversion efficiency to over 1%, doubling the efficiency with respect to state of the art devices employing standard mesoporous titania photoanodes. This improvement is attributed to several peculiar features of this array of nanostructures: high interfacial area; increased optical density thanks to the enhanced light scattering; and enhanced crystallization of Poly(3-hexylthiophene-2,5-diyl) inside the quasi-1D nanostructure

    A <em>Drosophila</em> model of cigarette smoke induced COPD identifies Nrf2 signaling as an expedient target for intervention.

    No full text
    Chronic obstructive pulmonary disease (COPD) is among the most important causes of death. Signaling systems that are relevant for tissue repair and detoxification of reactive oxygen species or xenobiotics are thought to be impaired in lungs of patients suffering from this disease. Here, we developed a simple cigarette smoke induced Drosophila model of COPD based on chronic cigarette smoke exposure that recapitulates major pathological hallmarks of the disease and thus can be used to investigate new therapeutic strategies. Chronic cigarette smoke exposure led to premature death of the animals and induced a set of phenotypes reminiscent of those seen in COPD patients, including reduced physical activity, reduced body fat, increased metabolic rate and a substantial reduction of the respiratory surface. A detailed transcriptomic analysis revealed that especially the TGF-beta, Nrf2 and the JAK/STAT signaling pathways are altered by chronic cigarette smoke exposure. Based on these results, we focused on Nrf2 signaling. A pharmacological intervention study performed with oltipraz, an activator of Nrf2 signaling, increased survival of cigarette smoke exposed animals significantly. Thus, the Drosophila COPD model recapitulates many major hallmarks of COPD and it is highly useful to evaluate the potential of alternative therapeutic strategies

    Could oxalate-extractable phosphorus replace phosphorus fractionation schemes in soil phosphorus prospections?—A case study in the prehistoric Milseburg hillfort (Germany)

    No full text
    A geoarchaeological soil phosphorus (P) prospection is used to identify a gate within the prehistoric rampart of the Milseburg hillfort (Hesse, Germany). This study compares the application of a P fractionation scheme and P extraction with ammonium-oxalate. We hypothesized that oxalate-extractable P (P-ox) and the related degree of P saturation (DPS) could replace the more expensive and time-consuming fractionation schemes for geoarchaeological investigations. Comparing the results, the P fractionation helped to verify the existence of another section of the prehistoric ramparts and to identify the location of a gate within it. It also helped to discover the archaeologically relevant soil depths in the investigated area. This information could not be retrieved from the P-ox data alone. Soil P-ox contents and DPS values are relatively unspecific with regard to prehistoric land use. However, DPS at least indicates settled versus unsettled areas. Still, the results of the P fractionation more clearly delineate Iron Age land use areas including settlement, non-settlement, rampart, and rampart gap (probable gate). Thus, in geoarchaeological contexts, this method seems to be preferable to a singular P-ox extraction. However, for better results, P-ox determination could be integrated into a P fractionation scheme
    corecore