9 research outputs found

    Baseline gene signatures of reactogenicity to Ebola vaccination: a machine learning approach across multiple cohorts

    Get PDF
    Introduction: The rVSVDG-ZEBOV-GP (Ervebo®) vaccine is both immunogenic and protective against Ebola. However, the vaccine can cause a broad range of transient adverse reactions, from headache to arthritis. Identifying baseline reactogenicity signatures can advance personalized vaccinology and increase our understanding of the molecular factors associated with such adverse events. Methods: In this study, we developed a machine learning approach to integrate prevaccination gene expression data with adverse events that occurred within 14 days post-vaccination. Results and Discussion: We analyzed the expression of 144 genes across 343 blood samples collected from participants of 4 phase I clinical trial cohorts: Switzerland, USA, Gabon, and Kenya. Our machine learning approach revealed 22 key genes associated with adverse events such as local reactions, fatigue, headache, myalgia, fever, chills, arthralgia, nausea, and arthritis, providing insights into potential biological mechanisms linked to vaccine reactogenicity

    Análise dos mecanismos regulatórios transcricionais mediados por microRNAs na Síndrome Metabólica

    No full text
    Metabolic Syndrome (MetS) is a combination of diseases interrelated and associated with increased mortality and risk of cardiovascular events. Among the elucidated molecular mechanisms of MetS, there are several genes regulated by miRNAs - small non-coding RNAs. A large number of transcriptomic studies in public databases integrated with new analysis methods can generate new insights. Therefore, this study aimed to identify circulating miRNAs and their target genes in MetS using a Systems Biology approach. For this, we used GEO-NCBI to download and analyse 26 microarray transcriptome studies of MetS and obesity. After preprocessing, the data underwent differential expression (LIMMA method), gene co-expression (CEMiTool), and enrichment (GSEA, Reactome) analyses. We retrieved a gene expression signature for subcutaneous adipose tissue (SAT) for obese individuals that included 291 consistent differentially expressed genes (DEG). This signature had a positive normalized enrichment score (NES) for adaptive immune system activation responses, and negative NES for metabolic pathways. The consensus co-expression network of SAT revealed 3 communities (CM) of densely interconnected genes. These CMs had a high number of up regulated genes and a consistent positive NES among the studies. The co-expressed genes of these 3 CMs were related to neutrophil degranulation, infiltration of immune system cells, and inflammatory processes. Also, a small brazillian cohort (6 individuals with MetS and 6 controls) underwent a seric miRNA profiling using PCR array. From the 222 miRNAs detected in serum, the differential expression analysis identified 4 upregulated miRNAs (miR-30c-5p, miR-421, miR-542-5p and miR-574) in MetS patients (p<0.01). The integrative miRNAs-mRNAs analysis revealed that the circulating upregulated miRNAs had 12 targets in the SAT, 3 targets in the liver; and no targets in the muscle and blood. Many of these target genes are known modulators of proinflammatory pathways. In conclusion, the use of Systems Biology in the analysis of gene networks and circulating miRNAs identified some potential molecular and pathophysiological mechanisms of the Metabolic Syndrome. The circulating miRNAs identified in this study are potential biomarkers and/or therapeutic targets. However, further studies are needed to validate these miRNAs and their target mRNA.A Síndrome Metabólica (MetS) é um conjunto de doenças inter-relacionadas e associadas ao aumento de mortalidade e risco de eventos cardiovasculares. Entre os mecanismos moleculares elucidados da MetS, existem muitos genes regulados por miRNAs - RNAs pequenos não codificadores. O grande número de estudos transcriptômicos em banco dados públicos integrado a novos métodos de análise podem gerar novas descobertas. Deste modo, o objetivo deste estudo foi identificar miRNAs circulantes e genes alvos na MetS usando a abordagem de Biologia de Sistemas. Para isso, GEO-NCBI foi usado para obter e analisar 26 estudos de transcriptoma por microarray de MetS e obesidade. Após o pré-processamento, realizamos análises de expressão diferencial (método LIMMA), co-expressão gênica (CEMiTool), e enriquecimento (GSEA, Reactome). Identificamos uma assinatura de expressão gênica do tecido adiposo subcutâneo (SAT) de indivíduos obesos, composta por 291 genes consistentemente diferencialmente expressos (DEG). Essa assinatura teve um escore de enriquecimento normalizado (NES) positivo para ativação de respostas do sistema imune adaptativo, e NES negativo para vias de metabolismo. A rede consenso de co-expressão do SAT revelou 3 comunidades (CM) de genes densamente interconectadas. Essas CMs continham muitos genes regulados positivamente e com consistência de NES positivo entre os estudos. Os genes co-expressos dessas 3 comunidades pertenciam a vias de a degranulação de neutrófilos, infiltração de células do sistema imune e processos inflamatórios. Além disso, uma pequena coorte brasileira (6 indivíduos com MetS e 6 controles) foi submetida à dosagem sérica de miRNAs por PCR array. Dos 222 miRNAs detectados no soro, a análise de expressão diferencial identificou 4 miRNAs regulados positivamente (miR-30c-5p, miR-421, miR-542-5p e miR-574) nos pacientes com MetS (p<0.01). A análise integrativa miRNAs-mRNAs revelou que osmiRNAs circulantes superexpressos tinham 12 alvos no SAT, 3 alvos no fígado; e nenhum alvo no músculo e no sangue. Muitos desses alvos são moduladores de vias ró-inflamatórias. Em conclusão, a utilização da Biologia de Sistemas na análise de redes gênicas e miRNAs circulantes identificou alguns potenciais mecanismos moleculares e fisiopatológicos da Síndrome Metabólica. Os miRNAs circulantes identificados neste trabalho são potenciais biomarcadores e/ou alvos terapêuticos. Entretanto, mais estudos são necessários para validar esses miRNAs e seus mRNAs alvos

    Análise dos mecanismos regulatórios transcricionais mediados por microRNAs na Síndrome Metabólica

    No full text
    Metabolic Syndrome (MetS) is a combination of diseases interrelated and associated with increased mortality and risk of cardiovascular events. Among the elucidated molecular mechanisms of MetS, there are several genes regulated by miRNAs - small non-coding RNAs. A large number of transcriptomic studies in public databases integrated with new analysis methods can generate new insights. Therefore, this study aimed to identify circulating miRNAs and their target genes in MetS using a Systems Biology approach. For this, we used GEO-NCBI to download and analyse 26 microarray transcriptome studies of MetS and obesity. After preprocessing, the data underwent differential expression (LIMMA method), gene co-expression (CEMiTool), and enrichment (GSEA, Reactome) analyses. We retrieved a gene expression signature for subcutaneous adipose tissue (SAT) for obese individuals that included 291 consistent differentially expressed genes (DEG). This signature had a positive normalized enrichment score (NES) for adaptive immune system activation responses, and negative NES for metabolic pathways. The consensus co-expression network of SAT revealed 3 communities (CM) of densely interconnected genes. These CMs had a high number of up regulated genes and a consistent positive NES among the studies. The co-expressed genes of these 3 CMs were related to neutrophil degranulation, infiltration of immune system cells, and inflammatory processes. Also, a small brazillian cohort (6 individuals with MetS and 6 controls) underwent a seric miRNA profiling using PCR array. From the 222 miRNAs detected in serum, the differential expression analysis identified 4 upregulated miRNAs (miR-30c-5p, miR-421, miR-542-5p and miR-574) in MetS patients (p<0.01). The integrative miRNAs-mRNAs analysis revealed that the circulating upregulated miRNAs had 12 targets in the SAT, 3 targets in the liver; and no targets in the muscle and blood. Many of these target genes are known modulators of proinflammatory pathways. In conclusion, the use of Systems Biology in the analysis of gene networks and circulating miRNAs identified some potential molecular and pathophysiological mechanisms of the Metabolic Syndrome. The circulating miRNAs identified in this study are potential biomarkers and/or therapeutic targets. However, further studies are needed to validate these miRNAs and their target mRNA.A Síndrome Metabólica (MetS) é um conjunto de doenças inter-relacionadas e associadas ao aumento de mortalidade e risco de eventos cardiovasculares. Entre os mecanismos moleculares elucidados da MetS, existem muitos genes regulados por miRNAs - RNAs pequenos não codificadores. O grande número de estudos transcriptômicos em banco dados públicos integrado a novos métodos de análise podem gerar novas descobertas. Deste modo, o objetivo deste estudo foi identificar miRNAs circulantes e genes alvos na MetS usando a abordagem de Biologia de Sistemas. Para isso, GEO-NCBI foi usado para obter e analisar 26 estudos de transcriptoma por microarray de MetS e obesidade. Após o pré-processamento, realizamos análises de expressão diferencial (método LIMMA), co-expressão gênica (CEMiTool), e enriquecimento (GSEA, Reactome). Identificamos uma assinatura de expressão gênica do tecido adiposo subcutâneo (SAT) de indivíduos obesos, composta por 291 genes consistentemente diferencialmente expressos (DEG). Essa assinatura teve um escore de enriquecimento normalizado (NES) positivo para ativação de respostas do sistema imune adaptativo, e NES negativo para vias de metabolismo. A rede consenso de co-expressão do SAT revelou 3 comunidades (CM) de genes densamente interconectadas. Essas CMs continham muitos genes regulados positivamente e com consistência de NES positivo entre os estudos. Os genes co-expressos dessas 3 comunidades pertenciam a vias de a degranulação de neutrófilos, infiltração de células do sistema imune e processos inflamatórios. Além disso, uma pequena coorte brasileira (6 indivíduos com MetS e 6 controles) foi submetida à dosagem sérica de miRNAs por PCR array. Dos 222 miRNAs detectados no soro, a análise de expressão diferencial identificou 4 miRNAs regulados positivamente (miR-30c-5p, miR-421, miR-542-5p e miR-574) nos pacientes com MetS (p<0.01). A análise integrativa miRNAs-mRNAs revelou que osmiRNAs circulantes superexpressos tinham 12 alvos no SAT, 3 alvos no fígado; e nenhum alvo no músculo e no sangue. Muitos desses alvos são moduladores de vias ró-inflamatórias. Em conclusão, a utilização da Biologia de Sistemas na análise de redes gênicas e miRNAs circulantes identificou alguns potenciais mecanismos moleculares e fisiopatológicos da Síndrome Metabólica. Os miRNAs circulantes identificados neste trabalho são potenciais biomarcadores e/ou alvos terapêuticos. Entretanto, mais estudos são necessários para validar esses miRNAs e seus mRNAs alvos

    Mycophenolic acid pharmacogenomics in kidney transplantation

    No full text
    Mycophenolic acid (MPA) is a potent antiproliferative drug prescribed to prevent acute rejection in kidney transplantation. MPA reversibly inhibits the enzymes involved in the synthesis of guanosine nucleotides, thus preventing DNA replication of immune cells. Consequently, the repression of both cell and humoral immunity induces renal allograft tolerance. MPA is an effective and safe immunosuppressive drug, but some patients show variability in drug concentration, acute rejection, graft dysfunction, or MPA-related adverse events. Although the pharmacogenomics of immunosuppressive drugs has been widely investigated, MPA has been explored to a lesser extent. This review of MPA pharmacogenomic studies, included pharmacokinetics, adverse events, and main clinical outcomes of MPA treatment in kidney transplantation. Associations of variants in genes encoding MPA metabolizing enzymes, transporters, and targets with drug efficacy and safety are described. Most pharmacogenetic studies have focused on small sample sizes and few simultaneously analyzed genetic variants. Some studies reported significant associations of pharmacokinetics- and pharmacodynamics-related genes with MPA exposure, acute rejection, graft dysfunction, hematological events, and gastrointestinal complications. However, even large cohorts did not replicate the findings, possibly due to divergent study design, immunosuppressive scheme, follow-up time, and other factors. Finally, the heterogeneity of aspects between studies limit conclusions on pharmacogenetic biomarkers of MPA in kidney transplantation

    Pharmacogenomics of mycophenolic acid in kidney transplantation: Contribution of immune response-related genes

    No full text
    Abstract Mycophenolic acid (MPA) inhibits IMPDH, involved in the guanosine nucleotides synthesis, and prevents DNA replication in immune cells. The repression of cell and humoral immunity by MPA induces allograft tolerance preventing acute rejection in solid organ transplantation. MPA is an effective and safe drug, but genetic and non-genetic factors have been implicated in the interindividual variability of drug response. Several studies have shown the impact of variants of pharmacokinetics or pharmacodynamics-related genes on MPA response in kidney transplantation. This review explored further the influence of genes involved in the immune response on clinical outcomes of kidney recipients on short- or long-term MPA treatment. Variants in genes related to T cell activation (CD28, CTL4, ICOS, PDPC1), pro-inflammatory cytokines (IL2, IL6, IL12A, IL12B, TNF, IFNG), immunomodulatory cytokines (IL4, IL10, TGFB1), and innate immune response (CD14, TLR2, TLR4) were shown to be associated with increased risk of acute rejection, graft function or survival, chronic graft nephropathy, viral infections or MPA-induced myelotoxicity. Some of the significant pharmacogenetic associations were confirmed by meta-analyses of kidney transplantation. These findings are suggestive that variants in immune response-related genes contribute to the variability of MPA response, and have potential application as biomarkers of acute rejection in kidney transplantation

    Pharmacogenomics of mycophenolic acid in kidney transplantation: Contribution of immune response-related genes

    No full text
    Mycophenolic acid (MPA) inhibits IMPDH, involved in the guanosine nucleotides synthesis, and prevents DNA replication in immune cells. The repression of cell and humoral immunity by MPA induces allograft tolerance preventing acute rejection in solid organ transplantation. MPA is an effective and safe drug, but genetic and non-genetic factors have been implicated in the interindividual variability of drug response. Several studies have shown the impact of variants of pharmacokinetics or pharmacodynamics-related genes on MPA response in kidney transplantation. This review explored further the influence of genes involved in the immune response on clinical outcomes of kidney recipients on short- or long-term MPA treatment. Variants in genes related to T cell activation (CD28,&nbsp;CTL4,&nbsp;ICOS,&nbsp;PDPC1), pro-inflammatory cytokines (IL2, IL6, IL12A, IL12B, TNF,&nbsp;IFNG), immunomodulatory cytokines (IL4, IL10, TGFB1), and innate immune response (CD14, TLR2, TLR4) were shown to be associated with increased risk of acute rejection, graft function or survival, chronic graft nephropathy, viral infections or MPA-induced myelotoxicity. Some of the significant pharmacogenetic associations were confirmed by meta-analyses of kidney transplantation. These findings are suggestive that variants in immune response-related genes contribute to the variability of MPA response, and have potential application as biomarkers of acute rejection in kidney transplantation

    Effects of 15-deoxy-Delta(12, 14) prostaglandin J(2) and ciglitazone on human cancer cell cycle progression and death: The role of PPAR gamma

    No full text
    The role of PPAR-gamma in ciglitazone and 15-d PGJ(2)-induced apoptosis and cell cycle arrest of Jurkat (before and after PPAR gamma gene silencing), U937 (express high levels of PPAR gamma) and HeLa (that express very low levels of PPAR gamma) cells was investigated. PPAR gamma gene silencing, per se, induced a G2/M cell arrest, loss of membrane integrity and DNA fragmentation of Jurkat cells, indicating that PPAR gamma is important for this cell survival and proliferation. Ciglitazone-induced apoptosis was abolished after knockdown of PPAR gamma suggesting a PPAR gamma-dependent pro-apoptotic effect. However, ciglitazone treatment was toxic for U937 and HeLa cells regardless of the presence of PPAR gamma. This treatment did not change the cell cycle distribution corroborating with a PPAR gamma-independent mechanism. On the other hand, 15-d PGJ(2) induced apoptosis of the three cancer cell lines regardless of the expression of PPAR gamma. These results suggest that PPAR gamma plays an important role for death of malignant T lymphocytes (Jurkat cells) and PPAR gamma agonists exert their effects through PPAR gamma-dependent and -independent mechanisms depending on the drug and the cell type. (C) 2007 Elsevier B.V. All rights reserved

    Male Gender and Arterial Hypertension are Plaque Predictors at Coronary Computed Tomography Angiography

    Full text link
    Background: Systemic Arterial Hypertension (SAH) is one of the main risk factors for Coronary Artery Disease (CAD), in addition to male gender. Differences in coronary artery lesions between hypertensive and normotensive individuals of both genders at the Coronary Computed Tomography Angiography (CCTA) have not been clearly determined. Objective: To Investigate the calcium score (CS), CAD extent and characteristics of coronary plaques at CCTA in men and women with and without SAH. Methods: Prospective cross-sectional study of 509 patients undergoing CCTA for CAD diagnosis and risk stratification, from November 2011 to December 2012, at Instituto de Cardiologia Dante Pazzanese. Individuals were stratified according to gender and subdivided according to the presence (HT +) or absence (HT-) of SAH. Results: HT+ women were older (62.3 ± 10.2 vs 57.8 ± 12.8, p = 0.01). As for the assessment of CAD extent, the HT+ individuals of both genders had significant CAD, although multivessel disease is more frequent in HT + men. The regression analysis for significant CAD showed that age and male gender were the determinant factors of multivessel disease and CS ≥ 100. Plaque type analysis showed that SAH was a predictive risk factor for partially calcified plaques (OR = 3.9). Conclusion: Hypertensive men had multivessel disease more often than women. Male gender was a determinant factor of significant CAD, multivessel disease, CS ≥ 100 and calcified and partially calcified plaques, whereas SAH was predictive of partially calcified plaques
    corecore