Mycophenolic acid pharmacogenomics in kidney transplantation

Abstract

Mycophenolic acid (MPA) is a potent antiproliferative drug prescribed to prevent acute rejection in kidney transplantation. MPA reversibly inhibits the enzymes involved in the synthesis of guanosine nucleotides, thus preventing DNA replication of immune cells. Consequently, the repression of both cell and humoral immunity induces renal allograft tolerance. MPA is an effective and safe immunosuppressive drug, but some patients show variability in drug concentration, acute rejection, graft dysfunction, or MPA-related adverse events. Although the pharmacogenomics of immunosuppressive drugs has been widely investigated, MPA has been explored to a lesser extent. This review of MPA pharmacogenomic studies, included pharmacokinetics, adverse events, and main clinical outcomes of MPA treatment in kidney transplantation. Associations of variants in genes encoding MPA metabolizing enzymes, transporters, and targets with drug efficacy and safety are described. Most pharmacogenetic studies have focused on small sample sizes and few simultaneously analyzed genetic variants. Some studies reported significant associations of pharmacokinetics- and pharmacodynamics-related genes with MPA exposure, acute rejection, graft dysfunction, hematological events, and gastrointestinal complications. However, even large cohorts did not replicate the findings, possibly due to divergent study design, immunosuppressive scheme, follow-up time, and other factors. Finally, the heterogeneity of aspects between studies limit conclusions on pharmacogenetic biomarkers of MPA in kidney transplantation

    Similar works

    Full text

    thumbnail-image

    Available Versions