95 research outputs found

    Discrepancies in Knee Joint Moments Using Common Anatomical Frames Defined by Different Palpable Landmarks

    Get PDF
    The aim was to investigate the effects of three anatomical frames using palpable anatomical landmarks of the knee on the net knee joint moments. The femoral epicondyles, femoral condyles, and tibial ridges were used to define the different anatomical frames and the segment end points of the distal femur and proximal tibia, which represent the origin of the tibial coordinate system. Gait data were then collected using the calibrated anatomical system technique (CAST), and the external net knee joint moments in the sagittal, coronal, and transverse planes were calculated based upon the three anatomical frames. Peak knee moments were found to be significantly different in the sagittal plane by approximately 25% (p ≤0.05), but no significant differences were seen in the coronal or transverse planes. Based on these findings it is important to consider the definition of anatomical frames and be aware that the use of numerous anatomical landmarks around the knee can have significant effects on knee joint moments

    Defining standards for modelling the biomechanics of the foot and ankle: a systematic review

    Get PDF
    The complex interaction of the bones of the foot has been explored in detail in recent years, which has led to the acknowledgement in the biomechanics community that the foot can no longer be considered as a single rigid segment. With the advance of motion analysis technology it has become possible to quantify the biomechanics of simplified units or segments that make up the foot. Advances in technology coupled with reducing hardware prices has resulted in the uptake of more advanced tools available for clinical gait analysis. The increased use of these techniques in clinical practice requires defined standards for modelling and reporting of foot and ankle kinematics. This systematic review aims to provide a critical appraisal of commonly used foot and ankle marker sets designed to assess kinematics and thus provide a theoretical background for the development of modelling standards

    Shoes that restrict metatarsophalangeal dorsiflexion cause proximal joint compensations

    Get PDF
    To describe barefoot, shod and in-shoe kinematics during stance phase of walking gait in a normal arched adult population. An equal sample of males and females (n = 24) was recruited. In order to quantify the effect of footwear independent of technical design features, an ASICS shoe (Onitsuka Tiger-Mexico 66, Japan) was used in this study. Markers were applied to three conditions; barefoot, shod, and in-shoe. The calibration markers were used to define static pose. The order of testing was randomised. Participants completed five trials in each condition. Kinematic data were captured using a 12 camera VICON MX40 motion capture system at 100 Hz and processed in Visual3D. A previously developed model was used to describe joint angles [1]. A univariate two-way ANOVA was used to identify any differences between the pairs of conditions. Post-hoc Sheffé tests were used to further interrogate the data for differences. At peak hallux dorsiflexion (Figure 1), during propulsion, the metatarsophalangeal joint (MPTJ) was significantly more dorsiflexed in the barefoot condition compared to the shod condition (p = 0.004). At the same gait event, the tibiocalcaneal joint (TCJ) was significantly more plantarflexed than both the shod and in-shoe conditions (p < 0.001), and the tarsometatarsal joint (TMTJ) was significantly less dorsiflexed in the barefoot condition compared to the shod and in-shoe conditions (p < 0.001). The findings of the current study demonstrate that footwear has significant effects on sagittal plane MPTJ joint dorsiflexion at peak hallux dorsiflexion, which results in compensations at proximal foot joints

    RELIABILITY OF THE LONG-RANGE CORRELATIONS OBTAINED FROM DETRENDED FLUCTUATION ANALYSIS OF RUNNING STRIDE INTERVALS

    Get PDF
    Monitoring stride interval long-range correlations has been suggested as a method for coaches and clinicians to track changes in fatigue and injury risk. This study investigated the between-day reliability of stride interval long-range correlations during treadmill running. Stride interval long-range correlations were assessed on two occasions 1-week apart using detrended fluctuation analysis during 6 minutes of running at 11, 13 and 15 km·h-1. Stride interval long-range correlations demonstrated good absolute reliability (95% limits of agreement: 0.11-0.14 arbitrary units) and relative reliability (intraclass correlation coefficient: 0.74-0.87) at each running speed. The absolute reliability values reported in this study can be used by athletes, coaches and clinicians to determine real changes in stride interval long-range correlations

    The development of a kinematic model to quantify in-shoe foot motion

    Get PDF
    A multi-segment foot model was used to develop an accurate and reliable kinematic model to describe in-shoe foot kinematics during gait

    Quantifying the in vivo quasi-static response to loading of sub-dermal tissues in the human buttock using magnetic resonance imaging

    Get PDF
    This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (Oct 2017) in accordance with the publisher’s archiving policyBackground The design of seating systems to improve comfort and reduce injury would benefit from improved understanding of the deformation and strain patterns in soft tissues, particularly in the gluteal region. Methods Ten healthy men were positioned in a semi-recumbent posture while their pelvic and thigh region was scanned using a wide-bore magnetic resonance imaging (MRI) scanner. Independent measurements of deformation for muscles and fat were taken for the transition from non-weight-bearing to weight-bearing loads in three stages. A weight-bearing load was achieved through having the subject supported by a flat, rigid surface. A non-weight-bearing condition was achieved by removing the support under the left buttock, leaving all soft tissue layers undeformed. An intermediate condition partially relieved the subject's left buttock by lowering the support relative to the pelvis by 20 mm, which left the buttock partially deformed. For each of these conditions, the thicknesses of muscle and fat tissues below the ischial tuberosity and the greater trochanter were measured from the MRI data. Findings In this dataset, the greatest soft tissue deformation took place below the ischial tuberosity, with muscles (mean = 17.7 mm, SD = 4.8 mm) deforming more than fat tissues (mean = 4.3 mm, SD = 5.6 mm). Muscles deformed through both steps of the transition from weight-bearing to non-weight-bearing conditions, while subcutaneous fat deformed little after the first transition from non-weight-bearing to partial-weight-bearing. High inter-subject variability in muscle and fat tissue strains was observed. Interpretation Our findings highlight the importance of considering inter-subject variability when designing seating systems

    Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis

    Get PDF
    © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (January 2018) in accordance with the publisher’s archiving policySummary Objective To study, in end-stage knee osteoarthritis (OA) patients, relationships between indices of in vivo dynamic knee joint loads obtained pre-operatively using gait analysis, static knee alignment, and the subchondral trabecular bone (STB) microarchitecture of their excised tibial plateau quantified with 3D micro-CT. Design Twenty-five knee OA patients scheduled for total knee arthroplasty underwent pre-operative gait analysis. Mechanical axis deviation (MAD) was determined radiographically. Following surgery, excised tibial plateaus were micro-CT-scanned and STB microarchitecture analysed in four subregions (anteromedial, posteromedial, anterolateral, posterolateral). Regional differences in STB microarchitecture and relationships between joint loading and microarchitecture were examined. Results STB microarchitecture differed among subregions (P < 0.001), anteromedially exhibiting highest bone volume fraction (BV/TV) and lowest structure model index (SMI). Anteromedial BV/TV and SMI correlated strongest with the peak external rotation moment (ERM; r = −0.74, r = 0.67, P < 0.01), despite ERM being the lowest (by factor of 10) of the moments considered, with majority of ERM measures below accuracy thresholds; medial-to-lateral BV/TV ratios correlated with ERM, MAD, knee adduction moment (KAM) and internal rotation moment (|r|-range: 0.54–0.74). When controlling for walking speed, KAM and MAD, the ERM explained additional 11–30% of the variations in anteromedial BV/TV and medial-to-lateral BV/TV ratio (R2 = 0.59, R2 = 0.69, P < 0.01). Conclusions This preliminary study suggests significant associations between tibial plateau STB microarchitecture and knee joint loading indices in end-stage knee OA patients. Particularly, anteromedial BV/TV correlates strongest with ERM, whereas medial-to-lateral BV/TV ratio correlates strongest with indicators of medial-to-lateral joint loading (MAD, KAM) and rotational moments. However, associations with ERM should be interpreted with caution
    corecore