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Word count: 248 words 

Abstract  

Background: The design of seating systems to improve comfort and reduce injury would 

benefit from improved understanding of the deformation and strain patterns in soft tissues, 

particularly in the gluteal region.  

Methods: Ten healthy men were positioned in a semi-recumbent posture while their pelvic 

and thigh region was scanned using a wide-bore magnetic resonance imaging (MRI) scanner. 

Independent measurements of deformation for muscles and fat were taken for the transition 

from non-weight-bearing to weight-bearing loads in three stages. A weight-bearing load was 

achieved through having the subject supported by a flat, rigid surface. A non-weight-bearing 

condition was achieved by removing the support under the left buttock, leaving all soft tissue 

layers undeformed. An intermediate condition partially relieved the subject’s left buttock by 

lowering the support relative to the pelvis by 20 mm, which left the buttock partially 

deformed. For each of these conditions, the thicknesses of muscle and fat tissues below the 

ischial tuberosity and the greater trochanter were measured from the MRI data.  

Findings: In this dataset, the greatest soft tissue deformation took place below the ischial 

tuberosity, with muscles (mean =17.7mm, SD = 4.8mm) deforming more than fat tissues 

(mean = 4.3mm, SD = 5.6mm). Muscles deformed through both steps of the transition from 

weight-bearing to non-weight-bearing conditions, while subcutaneous fat deformed little after 

the first transition from non-weight-bearing to partial-weight-bearing. High inter-subject 

variability in muscle and fat tissue strains was observed,  

Interpretation: Our findings highlight the importance of considering inter-subject variability 

when designing seating systems. 
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Keywords: Magnetic resonance imaging (MRI), muscle, quantification and estimation, 

sitting, soft tissue deformation, sitting discomfort, pressure sores 

Word count: 3,788 words 

1 Introduction 

Sitting for extended periods of time can compromise the health of gluteal soft tissues and 

may lead to discomfort or even injury (Stockton and Parker, 2002; Wall, 2000). As a person 

settles into a weight-bearing sitting posture, muscle and fat tissues in the gluteal region 

undergo large deformations. The high mechanical loads and the associated large soft tissue 

deformation below bony structures such as the ischial tuberosities are major factors 

contributing to sitting related discomfort and injury (Linder-Ganz et al., 2007; Shabshin et al., 

2010). 

Soft tissue response to mechanical loading has been studied using cadaveric samples 

(Untaroiu et al., 2005; Untaroiu and Lu, 2013) and animal models (Gefen, 2008b; Linder-

Ganz et al., 2006; Linder-Ganz and Gefen, 2004). These models help explain the 

phenomenological behaviour of soft tissues under loading, but they may not be an accurate 

guide to the in vivo behaviour of sub-dermal tissue layers of the human body (Makhsous and 

Lin, 2009), due to differences in mechanical behaviour between animal models or cadavers 

and soft tissues in living humans (Salcido et al., 2007). 

Current non-invasive technology cannot measure the sub-dermal tissue strains in response to 

mechanical loading, in vivo. Alternately, the in vivo behaviour, specifically deformation, of 

soft tissues can be used as an indirect measure of the mechanical response (strains) to loading 

(Shabshin et al., 2010b). Deformation of muscle and fat tissues for seated humans have been 

measured, in vivo, using medical imaging technologies such as ultrasound (Makhsous et al., 
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2008), Computer Tomography (CT) (Vannah and Childress, 1996) or Magnetic Resonance 

Imaging (MRI) (Linder-Ganz et al., 2007; Makhsous et al., 2011). However, the majority of 

previous in vivo measurements for gluteal tissue deformation have been limited to single 

subjects (Makhsous et al., 2007; Sonenblum et al., 2013; Then et al., 2007; Todd and 

Thacker, 1994). A few studies (Linder-Ganz and Gefen, 2007; Makhsous et al., 2011) have 

been conducted on larger samples, yet subjects were either lean or slightly overweight (BMI 

between 18 kg.m-2 and 26 kg.m-2), and single measurements were taken to describe the entire 

transition from non-weight-bearing to weight-bearing sitting postures (Al-Dirini et al., 2015).  

Access to data describing the deformation history throughout the transition between the 

extreme loading conditions may help develop a comprehensive understanding of how 

muscles and fat tissues deform under various sitting loads. Previous studies on gluteal tissue 

deformation have mostly focused on measuring the deformation, on a rigid seat, from the 

underformed to the fully deformed states, or vice versa, with little attention given to the 

intermediate deformation states. However, people mostly sit on some deformable 

surface/support (cushion), in which gluteal tissues will unlikely achieve the fully deformed 

state. Instead, soft tissues are more likely to become only partially deformed. Recent research  

by Sonenblum et al (2015), Call et al (2017) and Brienza et al (2017) have focused on the 

partially deformed state of gluteal tissues when sitting on deformable cushions. However, to 

date, data describing the in vivo, quasi-static deformation of gluteal tissues from the 

underformed to the fully deformed states (including intermediate deformation states) have 

only been published in single-subject studies or for loads that are too small compared to those 

experienced during sitting. Hence, the aim of this study was to quantify, using MRI scanning, 

the in vivo, quasi-static, compressive deformation of gluteal muscle and fat tissues for a 
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diverse cohort individuals, with focus on tissues below the ischial tuberosity and the greater 

trochanter. We hypothesised that the in vivo response of muscles under quasi-static loads 

representative of typical sitting are different than those of fat tissues. 

2 Methods 

2.1 Participants 

Ten healthy men within a diverse range of stature and body mass were recruited for this study 

(Table 1). To be included in this study, subjects had to be men between 18 and 65 years old. 

Subjects with a history of osteoporosis, arthritis, epilepsy, neuromotor disability and/or 

dysfunction, joint pathology, back pain or any back related disease were excluded from the 

study. Since MRI scanning was used in this study, subjects with metallic implants and/or 

devices (including pacemakers) were also excluded. Due to the spatial constraints of the MRI 

scanner’s dimensions, volunteers with statures greater than 182 cm were also excluded. The 

protocol for this study was approved by the Human Ethics Committee at the University of 

South Australia (protocol number: 0000031205) and all participants provided written 

informed consent. 

2.2 Image Data Collection 

Each subject wore thin shorts and positioned themselves in a semi-recumbent posture while 

the pelvic and thigh region of their body was scanned using a wide-bore MRI scanner 

(General Electric 450W GEM - 1.5 Tesla). The experiment posture was chosen as the least 

reclined that the scanner bore could accommodate. The subject’s posture was supported by 

wooden boards placed under the buttocks and cushions placed behind the back and under the 

knees (Figure 1). In the sagittal plane, the angle of the back support surface was 135ᵒ to 
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forward horizontal (45˚ back support sagittal angle). The lower-extremity support produced a 

sagittal thigh angle of approximately 60ᵒ (120˚ thigh to lower leg angle), also measured in the 

sagittal plane. The buttock area was supported by a pair of horizontal, flat, rigid boards, one 

under each buttock. Due to the reclined posture, a head support was provided. A belt was 

strapped around the subject’s knees to prevent body movement during the scans (Figure 1.a). 

To measure soft tissue deformation throughout the transition from non-weight-bearing to 

weight-bearing postures, each subject was exposed to three loading conditions and a scan was 

taken for each of these conditions. In the first scan, the subject sat in a weight-bearing 

posture, with the left and right buttocks deformed by the subject’s weight (Figure 1.d). The 

second scan was taken after removing a 10-mm wooden block under the subject’s left 

buttock, which left it partially deformed (Figure 1.e). In the final scan, the non-weight-

bearing posture was simulated by removing two additional wooden blocks under the left 

buttock, leaving all soft tissue layers undeformed (Figure 1.f). Subjects were instructed to 

actively try to stay level as blocks were removed. Each subject remained in each posture 

(after the blocks were removed) for approximately five to six minutes before the scanning 

started. A proton density sequence with inter-slice interval of 10 mm (8-mm slices with 2-

mm gaps) in the transverse plane was used for all scans. The fully deformed and the fully 

undeformed conditions for each subject were also scanned in the sagittal direction at 10-mm 

intervals (8-mm slices and 2-mm gaps) to compensate for any loss of information due to the 

relatively large inter-slice intervals in the transverse direction. The total scanning time for 

each subject was less than 60 minutes, with each scan taking between three and six minutes. 

2.3 Deformation and Posture Measurements from MRI Scans 
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Measurements of the pelvis orientation were taken to ensure that subjects did not make major 

postural changes between scans. Pelvic orientation measurements were taken in the plane of 

the transverse MRI slices showing the ischial tuberosities. Pelvic tilt in the frontal plane was 

defined as the angle between the horizontal and the line passing through the right and left 

ischial tuberosities (Figure 2). This was repeated for weight-bearing, partial-weight-bearing 

and non-weight-bearing conditions. The change in the pelvic tilt was taken relative to the 

full-weight-bearing condition.  

The orientation of the left side of the pelvis was measured as the angle between the line 

passing through the femoral head and the pubic symphysis and the seat surface. This angle 

was measured in the transverse and sagittal planes (Figure 2).  

Muscle and subcutaneous fat tissue thicknesses below the left ischial tuberosity and the left 

greater trochanter were taken in the transverse plane that included the most inferior points of 

these bony structures (Figure 2). If the left ischial tuberosity or the left greater trochanter was 

captured by more than one MRI slice, a mean value for soft tissue thicknesses was calculated 

based on measurements from each slice. This procedure was repeated for each loading 

condition. Muscle and subcutaneous fat tissue deformations from the deformed to the 

undeformed conditions (ΔTmuscle_MRI_full and ΔTfat_MRI_full) were defined as the difference 

between the undeformed and the fully deformed muscle and fat thicknesses, respectively. 

Similarly, partial deformations of muscle (ΔTmuscle_MRI_partial) and subcutaneous fat tissues 

(ΔTfat_MRI_partial) were defined as the difference between the undeformed and the partially 

deformed thicknesses. 

The Green-Lagrange strains in muscle (εmuscle (GL)) and subcutaneous fat tissues (εfat (GL)) 

were estimated using muscle (λmuscle – see Equation 1) and subcutaneous fat tissues (λfat – see 
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Equation 2) stretch ratios as per (Equations 3 and 4). Coefficients of variations (CV) were 

also calculated for muscle and fat MRI estimated strains (Equation 5). 

𝜆𝑚𝑢𝑠𝑐𝑙𝑒 =  
𝑇𝑀𝑢𝑠𝑐𝑙𝑒𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑_𝐼𝑇

𝑇𝑀𝑢𝑠𝑐𝑙𝑒𝑢𝑛𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑_𝐼𝑇

         (1) 

𝜆𝑓𝑎𝑡 =  
𝑇𝑓𝑎𝑡𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑_𝐼𝑇

𝑇𝑓𝑎𝑡𝑢𝑛𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑_𝐼𝑇

          (2) 

εfat (GL) =
1

2
 (𝜆𝑓𝑎𝑡

2 − 1)              (3) 

εmuscle (GL) =
1

2
 (𝜆𝑚𝑢𝑠𝑐𝑙𝑒

2 − 1)            (4) 

𝐶𝑉 =  
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛
          (5) 

3 Results 

3.1 Pelvic Tilt and Orientation 

The change in the pelvic tilt in the frontal plane was mostly negative indicating the subjects 

in most cases lifted their left buttock after the support under their left buttock was removed. 

With the exception of three subjects, the change in pelvic tilt for most subjects was less than 

6ᵒ of the full-weight-bearing condition (Table 3). Subjects 1 and 5 had relatively large 

changes in pelvic tilt for both the partial- and the non-weight-bearing conditions.  

The pelvic orientation relative to the seat surface ranged between 23.0ᵒ and 32.8ᵒ in the 

transverse plane (Φ), and between 52.8ᵒ and 88.7ᵒ in the sagittal plane (β) (Table 3). It was 

not possible to measure the pelvis orientation for one subject (subject 2) due to high 

distortion in the MRI scans near the femoral head and the pubic symphysis.  

3.2 Deformation measurements from MRI scans 
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Measurements from MRI data showed that muscles and subcutaneous fat tissues of all 

subjects deformed the most below the ischial tuberosity, and that tissues seem to be displaced 

in the lateral direction when the blocks were removed. For the study cohort, the mean (SD) 

total deformation (fully deformed → undeformed) of muscles and subcutaneous fat tissues 

below the ischial tuberosity were 17.7 mm (4.8 mm) and 4.3 mm (5.6 mm) respectively. The 

largest deformations relative to the initial total soft tissue thicknesses were also below the 

ischial tuberosity with 36.0% for subcutaneous fat tissues and 55.1% for muscles (Table 2).  

3.3 Gluteus Maximus Muscle Thickness below the Ischial tuberosity 

The gluteus maximus muscle deformed the most in the transition from the partially deformed 

to the undeformed condition. The muscle also deformed while transitioning from the fully 

deformed to the partially deformed conditions (Figure 3). The mean thicknesses for the 

partial and fully deformed muscle below the ischial tuberosity (relative to the undeformed 

thickness) were 70% and 60% respectively.  

3.4 Subcutaneous Fat and Skin Thickness below the Ischial tuberosity 

Fat tissues below the ischial tuberosity were deformed by a few millimetres while 

transitioning from the partially deformed to the undeformed state. However, fat thickness 

below the ischial tuberosity remained almost constant as the buttock transitioned from the 

fully deformed to the partially deformed states (Figure 3). The thickness of the subcutaneous 

fat tissue layer below the ischial tuberosity in the partially deformed and fully deformed 

states (relative to the undeformed thickness) were 81.1% and 80% respectively.  

3.5 Gluteus Maximus Muscle Thickness below the Greater Trochanter 
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On average, the thickness of the gluteus maximus muscle below the greater trochanter 

remained unchanged when the first block was removed (fully deformed → partially 

deformed). Muscles also maintained a constant thickness below the greater trochanter when 

two additional blocks were removed (partially deformed → fully undeformed). The mean 

(SD) deformation of the gluteus maximus muscle below the greater trochanter from the fully 

deformed to the partially deformed, and from the partially deformed to the underformed 

conditions were -0.7 mm (4.0 mm) and 0.2 mm (4.0 mm) respectively.   

3.6 Subcutaneous Fat and Skin Thickness below the Greater Trochanter 

The thickness of the subcutaneous fat below the greater trochanter gradually increased from 

the fully deformed to the partially deformed condition and from the partially deformed to the 

fully undeformed condition. However, the deformations were small (relative to the 

undeformed thickness), with mean deformations of 1.4 mm (2.6 mm) and 1.1 mm (4.0 mm) 

for partially deformed and fully deformed conditions respectively. 

 3.7 Strain Estimates 

Tissue strain was defined for the current analysis as the change in the depth of the tissue 

under each loading conditions relative to the no-load condition. Strains in the gluteus 

maximus muscle were higher than those in the subcutaneous fat layer. The mean (SD) 

compressive strain in the gluteus maximus muscle was 33 % (5 %) compared to 16 % (12 %) 

in the fat tissue layer (Table 3). The subcutaneous fat layer in subjects 6 and 9 was exposed to 

very small strains. The lowest strains in the gluteus maximus muscle were estimated for 

subject 5. The CV for the gluteus maximus muscle and subcutaneous fat tissues were 21% 

and 60% respectively. 
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4. Discussion  

4.1 Soft tissue deformation 

Measurements of soft tissue deformation in a semi-recumbent posture were obtained from 

MRI data for subjects within a broad range of BMI values. The study revealed that muscles 

below the ischial tuberosity deformed during both phases from weight-bearing to non-weight-

bearing, while subcutaneous fat tissues deformed only from weight-bearing to partial weight-

bearing conditions. This behaviour, observed across the entire cohort, suggests that the 

muscle strain is more sensitive to changes in seat support surface and load distribution than 

strain in subcutaneous fat. This was confirmed by the higher strains estimated for muscles 

compared to subcutaneous fat.  

In this study, measurements for soft tissue deformation were taken below the ischial 

tuberosity and the greater trochanter. While soft tissue deformation around the greater 

trochanter may not be of critical importance to typical sitting postures, it certainly is more 

important for wheelchair users when their lateral side of the thigh is compressed, or for those 

spending long duration in a side-lying position. In the semi-recumbent configuration used in 

this study, soft tissue deformation in the gluteal region below the greater trochanter was small 

compared to the deformation below the ischial tuberosity. In fact, the thickness of muscle 

tissues below the greater trochanter remained almost unchanged throughout the entire 

transition from weight-bearing to non-weight-bearing postures implying no deformation took 

place. This agrees with measurements reported in previous studies (Makhsous et al., 2008; 

Silber and Then, 2013; Then et al., 2007) and confirms assumptions (Mehta and Tewari, 

2000) about the load distribution for seated subject. In terms of magnitude, our measurements 

of the gluteus maximus thickness (38.5mm – 58.8 mm) seem to be greater than most of the 
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previous studies (< 30 mm), especially those with data obtained from subjects in an upright 

sitting posture (Brienza et al., 2017; Call et al., 2017; Sonenblum et al., 2015).  This may be 

due to differences in the subjects’ orientation in the MRI scanner. In this study, subjects 

adopted a semi-recumbent posture, in which the subjects’ buttocks and thighs were not 

aligned with the MRI tube. As a result, the transverse images captured a slightly oblique 

cross-section of the subjects’ buttocks, compared to those which would be captured in typical 

sitting postures. In addition, the orientation, with respect to gravity may have caused the 

gluteus maximus muscle to translate/deform so that a greater volume of the muscle is 

positioned closer to the ischial tuberosity. In contrast, our measurements of soft tissue 

deformation (muscle < 23.8 mm, fat < 14.2 mm) and of the undeformed subcutaneous fat 

thickness (14 mm – 39.5 mm) seem to fall within ranges reported in previous studies (fat 

thickness = 5mm – 45mm ; deformation: muscle < 27 mm, fat < 18.5 mm) (Linder-Ganz et 

al., 2007; Makhsous et al., 2011; Sonenblum et al., 2013; Todd and Thacker, 1994). 

Measurements of the soft tissue deformation at the partially deformed state (muscle < 23.7 

mm, fat < 11.8 mm) agreed with previous measurements taken for subjects in an upright 

seated posture on deformable cushions (muscle < 21 mm, fat < 27 mm) (Brienza et al., 2017; 

Call et al., 2017; Sonenblum et al., 2015). 

Previous studies were mostly for subjects that fall within the healthy BMI range. However, 

comparison with our previous study (Al-Dirini et al., 2015) on a cohort with similar 

demographics, but in a typical seated posture, shows that, on average, the deformations 

measured in this study were less than those in our previous study. For example, the gluteus 

maximus deformation under the ischial tuberosity in the current and the previous studies were 

17.4 (4) mm and 22.4 (4) mm, respectively. This is not surprising, as the orientation of the 
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body with respect to gravity is expected to influence the magnitude of the compressive load 

imposed of weight-bearing soft tissues in the gluteal region. 

 Muscle and fat tissues are known to be almost incompressible (Fung). Hence, the observed 

deformation is likely due to bulk movement of muscle and fat tissues around, within and 

between various compartments of connective tissue. It may be that the subcutaneous fat in 

this area is attached over fairly short distances to the skin, and hence it cannot move very far 

in response to forces. The behaviour of fat tissues is thought to be analogous to the behaviour 

of polymer foam under similar loads (Silber and Then, 2013b), where the adipocytes initially 

deform transversely, until they no longer deform in the same direction (Silber and Then, 

2013b). From this point onwards, they start bearing tensile forces (due to the adipocytes 

pushing against each other), which leads to the observed behaviour (Silber and Then, 2013b). 

Fat elsewhere on the body might be considerably more mobile. 

4.2 Anomalies in the measured soft tissue deformations 

Inspection of the subject-specific deformation revealed three anomalies in the measurements 

obtained. Subject 5 had the largest (negative) change in their pelvic tilt (-13°), which 

indicates that they lifted their left buttock off the surface of the wooden block. This would 

have reduced the level of compression on these tissues, which in turn reduced the total tissue 

deformation (Table 2), with their total soft tissue deformation not exceeding 4.1 mm, which 

is less than a fifth of the average measured total soft tissue deformation (20.8 mm) in the 

study cohort. Negative deformation was also noted for the subcutaneous fat layer measured 

below the ischial tuberosity for five subjects during the transition from fully deformed to the 

partially deformed conditions. These negative deformations imply an increase in the planar 

thickness of subcutaneous fat tissues. Also, the combined muscle and fat tissue deformation 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

14 

was not expected to exceed 10 mm in the first transition, and 20 mm in the second transition, 

but the deformation for subjects 2 and 3 was greater than 10 mm in the first transition, and 

greater than 20 mm in the second transition. These anomalies are likely due to the 

deformation of soft tissues in 3D space (Al-Dirini et al., 2015; Kaplan, 2003; Makhsous et al., 

2011) and the incompressibility (Silber and Then, 2013b) of muscle and fat. When muscles 

below the ischial tuberosity are loaded, they undergo 3D deformations. The negative 

deformations measured in this study suggest that, similar to muscles, fat tissue deformation 

consists of three components. Such a deformation appears to push fat tissues away from, or 

towards (in case of negative deformations) the ischial tuberosity. When fat tissues are pushed 

away from the ischial tuberosity, their thickness decreases, whereas, when the fat tissues are 

pushed towards the ischial tuberosity, the thickness of fat tissues increases. A similar 

deformation can be expected for inter-muscular fat tissues under typical loads in functional 

sitting situations. When the inter-muscular fat tissues are pushed towards the ischial 

tuberosity, it forces muscle and/or subcutaneous fat tissues to deform more, resulting in an 

overall soft tissue deformation that is not only influenced by the indentation of the external 

surface below the buttock, but also by the internal soft tissue layers below the ischial 

tuberosity.   

4.3 Estimates of the strains in muscle and fat tissues 

The estimated strains showed that muscles were under higher strains than subcutaneous fat 

tissues when exposed to external loads that act in a direction different from the orientation of 

muscle fibres. This was observed for all subjects. Similar findings were reported in previous 

studies in the literature (Al-Dirini et al., 2015; Linder-Ganz and Gefen, 2004; Linder-Ganz et 

al., 2009; Silber and Then, 2013a; Then et al., 2007). The study also showed that there is high 
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variation in the estimated strains for both muscles and subcutaneous fat tissues, with greater 

variation in the estimated strains for subcutaneous fat tissues. Given the small sample in this 

study, it was not possible to identify the main factors leading to the observed variability. 

However previous studies suggested that anthropometry (stature, body mass, etc.) (Gefen, 

2012), anatomy (radius of curvature for the ischial tuberosity, muscle-to-fat ratio, etc.) 

(Gefen, 2008a) and soft tissue material properties (Then et al., 2007) are factors that 

influence the internal strains.  

Findings in this study build on current understanding of the interaction between gluteal soft 

tissues and body support systems, including wheelchairs and seats. In particular, the observed 

variability in soft tissue deformation is an important factor to consider for improving current 

seat and cushion designs.  

4.4 Limitations 

The study is limited by the small sample size. Also, due to gender differences in posture 

(Dunk and Callaghan, 2005) and soft tissue properties (Silber and Then, 2013), only adult 

men were recruited for the study. Nonetheless, this sample is the most diverse (in terms of 

BMI range) in the literature for which in vivo deformation measurements have been made. 

The results of this study provide insight into the in vivo quasi-static deformation of soft 

tissues in the buttock under sitting loads, which were not studied in previously published 

research.  

Tissue deformations were measured in only one posture that is not representative of typical 

functional seated postures, although it may be more similar to the reclined posture that 

hospitalised patients may adopt during the daytime. The average orientation of the pelvis 
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relative to the seat surface was 28ᵒ in the transverse plan and 67ᵒ in sagittal plane, whereas in 

typical seated situations the external force is oriented more superiorly. The experiment 

posture was chosen as the least reclined that could be used in the MRI bore, however, it has 

also resulted in the load being supported by a region that is slightly posterior to the load-

bearing region of the ischial tuberosity during typical seated postures. In addition, the 

experimental posture was not aligned with gravity, which is expected to reduce compression, 

and increase the shear component of the force acting on load-bearing soft tissues, compared 

to typical seated postures. Although the experimental setup may have resulted in reasonable 

consistency in the pelvic orientation in the axial plane, variation was still noted in 

measurements taken in the sagittal plane (Table 3). As a result, this may have influenced the 

inclination and the hip flexion angles for the subjects. Consequently, this has likely resulted 

in a reduction of tissue compression, compared to a typical seated posture. Further research 

using open MRI, which allows more controlled replication of typical seated postures, will be 

useful to determine how differences in loading direction influence the patterns of buttock 

deformation. 

The flat, rigid buttock support surface is also not representative of typical seating 

environments. The flat support surface constrained the net external deformation to be 

identical between the ischial tuberosity and the greater trochanter regions, except for 

differences due to skeletal posture changes. A compliant seating surface would be expected to 

produce different patterns of deformation, with the design of the seating surface influencing 

those results. More research is needed using padded support surface to determine how 

padding design alters the patterns of tissue movement and deformation. 
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There is little agreement in the literature on what would be the ideal slice thickness, with the 

MRI slice thickness ranging from 0.6mm (Makhsous et al 2011) to 6mm (Al-Dirini et al 

(2015) and Call et al (2017)). In this study, we have used relatively large slice thickness 

(10mm) for the scanning protocol, which may have resulted in the loss of some information 

describing complex anatomical structures, such as the proximal femur (lesser trochanter, 

femoral neck, etc). Hence, sagittal scans were also obtained to confirm that this potential loss 

of information in the transverse scans did not affect the region of interest for this study 

(ischial tuberosity and greater trochanter). Indeed, inspection of sagittal scans confirmed that 

the transverse scans were able to capture the inferior most point of the ischial tuberosity and 

the greater trochanter, and hence transverse scans were considered sufficient for this study.  

 This study assumes that soft tissue deformation is unaffected by deformation history, such 

that the transition from weight-bearing to non-weight-bearing postures is the same as the 

deformation caused by the reverse transition (non-weight-bearing to weight-bearing 

postures). This assumption does not account for the time and history dependencies of soft 

tissue behaviour, which can strongly influence the transient and dynamic behaviour of soft 

tissues under compression (Then et al., 2012; Van Loocke et al., 2008; Van Loocke et al., 

2009). However, results from Van Loocke et al (2008) indicate that significant stress-

relaxation occurs when deformation is held constant after a compressive ramp, especially 

within the first hundred seconds of relaxation, however, this diminishes after approximately 

three to six minutes. In this study, subjects remained (as still as possible) in the same posture 

for approximately five to six minutes before the scanning to allow history dependencies to 

fade out. 
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Future research investigating the in vivo behaviour of gluteal soft tissues for seat-human 

interaction is needed to account for the time dependent component. Using the current 

protocol, MRI scanning may not provide time-history information about soft tissue 

deformation required for characterising the viscoelastic material properties. Ultrasound 

measurements may provide an attractive alternative to describe the time-dependency of the 

behaviour (Krouskop et al., 1987; Makhsous et al., 2008). A suggested protocol would couple 

MRI and ultrasound imaging modalities to characterise the 3D quasi-static and the 

viscoelastic properties of soft tissues under deformations associated with sitting. 

5 Conclusion 

Muscles gradually deform throughout the entire transition from weight-bearing to non-

weight-bearing conditions, while subcutaneous fat deformed little after the first transition 

from non-weight-bearing to partial-weight-bearing conditions. This suggests that the muscle 

strain will be more sensitive to changes in seat support surface load and load distribution than 

strain in subcutaneous fat. 
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Figure 1: This figure shows an illustration (a) and a photograph (b) of the setup for MRI 

scanning. Figure (c) shows the wooden board (dark colour) with removable inserts (light 

colour). The inserts were removed from underneath the left buttock of each subject to alter 

the boundary condition imposed on the buttock during each of the MRI scanning stages. The 

different loading conditions were (1) fully deformed (MRI of the buttocks in this condition is 

shown in (d)), (2) Partially deformed (shown in e) and (3) fully undeformed (f). 

 

 Figure 2: (a) an illustration of tissue thicknesses measured from MRI scans. In this slice, the 

gluteus maximus muscle thickness below the ischial tuberosity and the greater trochanter are 

indicated by numbers 1 and 3, respectively. The fat thickness below the ischial tuberosity and 

the greater trochanter are indicated by numbers 2 and 4, respectively. Figure (b) shows the 

pelvic tilt angle (Ө), relative to the seat surface (shown as the blue rectangle below the 

pelvis). Figures (c) and (d) show the pelvic orientation, with respect to the seat surface in the 

sagittal (β) and transverse (Φ) planes, respectively. 

 

Figure 3: Measurements of soft tissue thickness below the ischial tuberosity (left) and the 

greater trochanter (right) for each of the three different loading conditions. It appears that the 

gluteus maximus muscle below the ischial tuberosity continued to deform throughout the 

entire load range, while fat seemed to block after the first transition. The thickness of the 

gluteus maximus muscle seems to remain constant throughout the entire load range.  
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Table 1: Summary of the study cohort demographics. 

Table 2: Summary of soft tissue deformations measured below the ischial tuberosity of each 

subject for each of the transitions.  

Table 3: Summary of Pelvic tilt and orientation, and Green-Lagrange (GL) strains in muscles 

and fat tissues below the ischial tuberosity estimated from MRI scans for each subject. 
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Figure 1 
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Figure 2 
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Figure 3 
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Table 1 

Subject 

BMI 

(kg.m-2) 

Body mass 

(kg) 

Stature 

(cm) 

Age 

(years) 

  

1 24.2 79.2 169.4 39 

2 28.4 80.7 180.8 33 

3 35.6 110.8 180.8 30 

4 26.1 84.6 175.6 31 

5 25.9 79.8 180.0 25 

6 25.0 81.6 170.0 31 

7 26.6 76.9 168.6 19 

8 35.7 115.5 181.7 29 

9 31.0 102.4 176.4 27 

10 21.7 62.3 179.9 31 
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Table 2 

 

 

Subject 

Measurements 

Deformation 

Partially 

deformed  

Undeformed 

 

Deformation 

Fully deformed 

 partially 

deformed 

 

Total Deformation 

Fully deformed   Undeformed 

ID BMI 

(kgm-

2) 

Stature 

(cm) 

Undeformed 

Thickness 

(mm) 

Muscle 

(mm) 
Fat 

(mm) 

Muscle 

(mm) 

Fat 

(mm) 

Muscle 

(mm) 

Fat 

(mm) 

Muscle 

+Fat 

(mm) 

Muscle 

(%)^ 

Fat 

(%)^ 

Muscle Fat  

1 24.2 180.8 39.3 14.0 10.7 1.1 10.9 1.3 21.6 2.4 24.0 55.1 17.3 

2 28.4 168.6 44.1 33.1 16.1 11.3 6.1 0.4 22.2 11.7 33.9 50.4 35.3 

3 35.6 176.4 41.1 39.5 11.3 11.8 6.3 2.4 17.6 14.2 31.8 42.9 36.0 

4 26.1 180 43.4 24.7 9.8 2.0 3.7 4.3 13.5 6.3 19.8 31.1 25.7 

5 25.9 180.0 39.5 15.4 9.3 -2.6 -1.6 -0.6 7.7 -3.6 4.1 19.3 -20.6 

6 25.0 180.8 52.8 21.4 23.7 2.9 0.1 -3.5 23.8 -0.6 23.2 45.0 -2.6 

7 26.6 170 38.5 25.8 7.4 6.4 7.0 1.3 14.4 7.7 22.1 37.5 29.8 

8* 35.7 179.9 58.8 16.5 9.2 5.0 7.4 -2.7 16.6 2.3 18.9 28.3 14.1 

9** 31.0 181.7 41.3 20.6 11.1 2.2 8.6 -6.7 18.7 -4.5 14.2 47.7 0.0 

10 21.7 169.4 54.3 17.5 11.5 2.7 7.9 -0.5 14.2 2.2 16.4 35.7 12.6 

^ Percentage of total soft tissue deformation    

* Subject had fat infiltrating into the Gluteus Maximus muscle 

** Subject’s buttock was slightly deformed in the undeformed scans 

Note: negative deformations indicate an increase in tissue thickness, while 

positive deformations indicate a decrease in thickness at the measurement 

site. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

 

 

 

29 

 

Table 3 

 

  Change in pelvic tilt ^ Pelvis orientation Strain 

ID Partial 

weight-

bearing (ᵒ) 

Non-weight 

bearing (ᵒ) 

Axial 

angle 

(ᵒ) 

Sagittal 

angle 

(ᵒ) 

𝜺𝒎𝒖𝒔𝒄𝒍𝒆 (𝑮𝑳) 

(%) 

𝜺𝒇𝒂𝒕 (𝑮𝑳) 

(%) 

  

1 -6.8 -7.8 32.8 

 

52.8 40 16 

2 2.1 -5.3 N/A N/A 38 29 

3 -2.4 0.2 29.8 67.9 34 30 

4 -0.6 -2.6 28.4 88.7 26 22 

5 -5.2 -13.1 29.9 56.6 20 20 

6 -5.5 -1.2 23.0 72.8 35 3 

7 1.4 0.1 26.3 53.7 30 25 

8* -0.1 -0.1 29.2 69.7 24 13 

9** -1.3 -0.2 24.8 73.0 36 0 

10 -0.4 1.5 31.8 58.2 29 12 

  
   

 

  
*  Subject had fat infiltrating into the Gluteus Maximus muscle. 

 **  Subject’s buttock was slightly deformed in the non-weight-bearing 

scans. 

 ^   Relative to the full-weight-bearing condition. 

^ Percentage of total soft tissue deformation    

* Subject had fat infiltrating into the Gluteus Maximus muscle 

** Subject’s buttock was slightly deformed in the undeformed scans 

Note: negative deformations indicate an increase in tissue 

thickness, while positive deformations indicate a decrease 

in thickness at the measurement site. 
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 N/A  High distortion in the MRI scans near the femoral head and the 

public symphasis. 
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Highlights  

 

 Gluteal tissue deformation under a range of loads were measured for a diverse cohort 

using MRI scans. 

 Muscles deformed throughout the transition from weight-bearing to non-weight-

bearing conditions. 

 Subcutaneous fat deformed little beyond the partial-weight-bearing condition 
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