491 research outputs found

    Hybridization-induced magnetism in correlated cerium systems

    Get PDF
    There is a great change in the nature of the magnetic ordering on going from CeIn3, a local moment antiferromagnetic system, to CePb3, a heavy fermion itinerant antiferromagnetic system, both of which have Cu3Au crystal structure. We have applied ab initio electronic structure calculations, based on the linear-muffin-tin-orbital method, and a phenomenological theory of orbitally driven magnetic ordering, to study the effects of the band-f hybridization-induced interactions and the band-f exchange-induced interactions, pertinent to the magnetic behavior of these systems. The position of the Ce 4 f energy level relative to the Fermi energy and the intra-atomic Coulomb interaction are obtained from a sequence of three total-energy supercell calculations with two, one and zero f electrons in the Ce 4 f core. The calculations elucidate the origins in the electronic structure of the variation of the f-state resonance width characterizing the strength of the hybridization and the density of states at the Fermi energy characterizing the number and character of band states available for hybridization. We present results for the hybridization potential and the hybridization-induced exchange interactions on going from CeIn3 to CePb3, where the only obvious change is the addition of an anion p electron

    Sensitive Detection of Organophosphorus Pesticides Using a Needle Type Amperometric Acetylcholinesterase-based Bioelectrode. Thiocholine Electrochemistry and Immobilised Enzyme Inhibition

    Get PDF
    International audienceAn acetylcholinesterase (AChE) based amperometric bioelectrode for a selective detection of low concen¬ trations of organophosphorus pesticides has been developed. The amperometric needle type bioelectrode consists of a bare cavity in a PTFE isolated Pt-Ir wire, where the AChE was entrapped into a photopolymerised polymer of polyvinyl alcohol bearing styrylpyridinium groups (PVA-SbQ). Cyclic voltammetry, performed at Pt and AChE/Pt disk electrodes, confirmed the irreversible, monoelectronic thiocholine oxidation process and showed that a working potential of + 0.410 V vs. Ag/AgCl, KClSat was suitable for a selective and sensitive amperometric detection of thiocholine. The acetylthio-choline detection under enzyme kinetic control was found in the range of 0.01-0.3 U cm~" of immobilised AChE. The detection limit, calculated for an inhibition ratio of 10%, was found to reach 5 jxM for dipterex and 0.4 jaIVI for paraoxon. A kinetic analysis of the AChE-pesticide interaction process using Hanes-Woolf or Lineweaver-Burk linearisations and secondary plots allowed identification of the immobilised enzyme inhibition process as a mixed one (non/uncompetitive) for both dipterex and paraoxon. The deviation from classical Michaelis Menten kinetics induced from the studied pesticides was evaluated using Hill plots

    Chronic alcohol induces M2 polarization enhancing pulmonary disease caused by exposure to particulate air pollution

    Get PDF
    Background: Chronic alcohol consumption causes persistent oxidative stress in the lung, leading to impaired alveolar macrophage (AM) function and impaired immune responses. AMs play a critical role in protecting the lung from particulate matter (PM) inhalation by removing particulates from the airway and secreting factors which mediate airway repair. We hypothesized AM dysfunction caused by chronic alcohol consumption increases the severity of injury caused by PM inhalation. Methods: Age- and sex-matched C57BL/6 mice were fed the Lieber-DeCarli liquid diet containing either alcohol or an isocaloric substitution (control diet) for 8 weeks. Mice from both diet groups were exposed to combustion-derived PM (CDPM) for the final 2 weeks. AM number, maturation, and polarization status were assessed by flow cytometry. Noninvasive and invasive strategies were used to assess pulmonary function and correlated with histomorphological assessments of airway structure and matrix deposition. Results: Co-exposure to alcohol and CDPM decreased AM number and maturation status (CD11c expression), while increasing markers of M2 activation (interleukin [IL]-4Rα, Ym1, Fizz1 expression, and IL-10 and transforming growth factor [TGF]-β production). Changes in AM function were accompanied by decreased airway compliance and increased elastance. Altered lung function was attributable to elevated collagen content localized to the small airways and loss of alveolar integrity. Intranasal administration of neutralizing antibody to TGF-β during the CDPM exposure period improved changes in airway compliance and elastance, while reducing collagen content caused by co-exposure. Conclusions: Combustion-derived PM inhalation causes enhanced disease severity in the alcoholic lung by stimulating the release of latent TGF-β stores in AMs. The combinatorial effect of elevated TGF-β, M2 polarization of AMs, and increased oxidative stress impairs pulmonary function by increasing airway collagen content and compromising alveolar integrity. © 2013 by the Research Society on Alcoholism

    Product Family Design Knowledge Representation, Aggregation, Reuse, and Analysis

    Get PDF
    A flexible information model for systematic development and deployment of product families during all phases of the product realization process is crucial for product-oriented organizations. In current practice, information captured while designing products in a family is often incomplete, unstructured, and is mostly proprietary in nature, making it difficult to index, search, refine, reuse, distribute, browse, aggregate, and analyze knowledge across heterogeneous organizational information systems. To this end, we propose a flexible knowledge management framework to capture, reorganize, and convert both linguistic and parametric product family design information into a unified network, which is called a networked bill of material (NBOM) using formal concept analysis (FCA); encode the NBOM as a cyclic, labeled graph using the Web Ontology Language (OWL) that designers can use to explore, search, and aggregate design information across different phases of product design as well as across multiple products in a product family; and analyze the set of products in a product family based on both linguistic and parametric information. As part of the knowledge management framework, a PostgreSQL database schema has been formulated to serve as a central design repository of product design knowledge, capable of housing the instances of the NBOM. Ontologies encoding the NBOM are utilized as a metalayer in the database schema to connect the design artifacts as part of a graph structure. Representing product families by preconceived common ontologies shows promise in promoting component sharing, and assisting designers search, explore, and analyze linguistic and parametric product family design information. An example involving a family of seven one-time-use cameras with different functions that satisfy a variety of customer needs is presented to demonstrate the implementation of the proposed framework

    In situ Remediation Technologies Associated with Sanitation Improvement: An Opportunity for Water Quality Recovering in Developing Countries

    Get PDF
    The access to safe water is of great importance to reduce the spread of diseases caused by water-related pathogens and to assure the life quality to the human-beings. According to the World Health Organization (WHO, 2011), diarrhea, for example, is responsible for two million deaths every year, mainly among children under the age of five. The environmental effects of some pollutants (e.g. endocrine disruptors, organic compounds) remain unclear and the harmful consequences of the exposure to contaminated water are certainly an important issue for the next decades. Moreover, many research have linked water quality to health problems, such as cancer (Rodrigues et al., 2003; Han et al., 2009), insufficient uptake of nutrients and trace-metals (Lind & Glynn 1999), diabetes, cerebrovascular and kidney disease (Meliker et al., 2007). The costs and benefits of water quality have been the topic of stimulating discussion in the scientific community (Isaac, 1998; Hajkowicz et al., 2008; Saz-Salazar et al., 2009) because water quality decrease implies not only loss of lives, but also economic damages. The costs of the anthropogenic eutrophication reach US2.2billionintheUnitedStates(Doddsetal.,2009)andUS2.2 billion in the United States (Dodds et al., 2009) and US187.2 million in England and Wales every year (Pretty et al. 2002). The reduction of nutrient loading to the aquatic systems worldwide is the cornerstone of artificial eutrophication control (Smith et al., 1999), with repercussions in other fields like public health and economics. The anthropogenic impacts on the quality of urban water bodies in developing countries are frequently exacerbated by poor levels of sanitation and inadequate water and wastewater management. Pressure from urban areas on the water quality was reported in Argentina (Almeida et al., 2007), Brazil (Jordão et al., 2007), India (Suthar et al., 2010) and Mexico (Bravo-Inclan et al., 2008). Rapid shifts in the land use patterns, unplanned urbanization and inefficient resources allocation are further aggravating environmental problems in such 256 Ecological Water Quality - Water Treatment and Reuse nations. Restrictions to the water uses are increasing as the pollution of rivers and lakes is offering more risks to the human health and to the maintenance of the ecological balance. Within this context, the water resources management plays an important role in the conciliation of the water uses and the long-term sustainability. The in situ remediation of rivers, lakes and reservoirs is a decentralized alternative that may be convenient in some cases in comparison to off-site solutions. The main advantages of the in situ approach are, besides the relative small period of time required to its implementation, the suitability of the in situ facilities to the regions with lack of available areas to build off-site treatment plants (e.g. highly urbanized areas) and the lower expenses with pumping structures. Although it takes more time and requires more investments, the implementation of sanitation infrastructure is also necessary. With the increase of the negative environmental impacts induced by the anthropogenic activities, the remediation of aquatic systems became an alternative to restore the ecological functions of the ecosystems and accelerate their recovery. The first and most important step in a remediation project is to define the remedial action aims to be accomplished at the site, involving the desirable mechanisms of treatment - biological (e.g. phytoremediation), physical and/or chemical (e.g. oxidation, air stripping, ion exchange, precipitation). Most of the current technologies for aquatic systems remediation were adapted from unitary processes used for drinking water production, industrial purposes or wastewater treatment. The flotation, for example, has been used in mining activities to separate the mineral of interest from the gangue since 1893 (Hoover, 1912). The technology was then adapted to treat water and wastewater through dissolved air flotation (e.g. Heinänen et al., 1995). Ultrafiltration membranes in turn have been mainly used for drinking water production (2 million m3 /day worldwide according to Laîné et al., 2000). According to the same authors, the oldest water industry with ultrafiltration plant started to operate in 1988 in France. The membranes are becoming cheaper over the years and the technology is more attractive for remediation of surface waters at the present time

    The impact of clean sky technology on future 3500 lb single engine light rotorcraft

    Get PDF
    This manuscript describes a collaborative research effort between members of the Clean Sky Joint Technology Initiative (JTI), within the broader area of novel rotorcraft engine technology and rotorcraft operations. The Clean Sky JTI was created as a public/private partnership between the European Commission and the aeronautical industry. The paper assesses the impact of innovative engine technologies to be integrated into the next generation of rotorcraft and evaluates their potential towards meeting the ACARE 2020 goals. The focus is on the lower segment of the light helicopter class with a particular interest in the performance of two innovative powerplants: an advanced turboshaft with Lean Premixed Prevaporised (LPP) combustor design and a supercharged diesel cycle engine. In order to evaluate their benefits alongside other Clean Sky technologies, a multi-disciplinary rotorcraft performance analysis framework (PhoeniX) is employed. Two variants of the same light helicopter platform with year 2020 technology plus Clean Sky innovations are modelled, named hereafter as Single Engine Light (SEL) Y2020 and High Compression Engine (HCE) Y2020, respectively. A turboshaft engine-powered helicopter, representative of year 2000 technology (SEL Y2000) is also modelled and used as reference. Payload-Range diagrams (PR) of the three vehicles were generated. The HCE Y2020 reached a maximum range 83% greater than the SEL counterparts. The gaseous emissions of the helicopters were also evaluated over three notional scenarios representative of light helicopter activities. The HCE Y2020 emitted 60% less carbon dioxide (CO2) and 63% less nitrogen oxides (NOx) than the SEL Y2000. The SEL Y2020 emitted on average 19% and 49% less CO2 and NOx, respectively, compared with the SEL Y2000. It was also observed that the NOx production rate of the LPP technology integrated in the SEL Y2020 combustor depends strongly on engine power setting. At certain power settings, the SEL Y2020 emitted less NOx than the HCE Y2020 even though the HCE Y2020 emitted less NOx over the complete mission. The direct comparison between SEL Y2020 and HCE Y2020 highlighted the superior performance of the HCE engine over the gas turbine for the mission types and rotorcraft class simulated

    Model combustion-generated particulate matter containing persistent free radicals redox cycle to produce reactive oxygen species

    Get PDF
    Particulate matter (PM) is emitted during thermal decomposition of waste. During this process, aromatic compounds chemisorb to the surface of metal-oxide-containing PM, forming a surface-stabilized environmentally persistent free radical (EPFR). We hypothesized that EPFR-containing PM redox cycle to produce ROS and that this redox cycle is maintained in biological environments. To test our hypothesis, we incubated model EPFRs with the fluorescent probe dihydrorhodamine (DHR). Marked increases in DHR fluorescence were observed. Using a more specific assay, hydroxyl radicals ( •OH) were also detected, and their level was further increased by cotreatment with thiols or ascorbic acid (AA), known components of epithelial lining fluid. Next, we incubated our model EPFR in bronchoalveolar lavage fluid (BALF) or serum. Detection of EPFRs and •OH verified that PM generate ROS in biological fluids. Moreover, incubation of pulmonary epithelial cells with EPFR-containing PM increased •OH levels compared to those in PM lacking EPFRs. Finally, measurements of oxidant injury in neonatal rats exposed to EPFRs by inhalation suggested that EPFRs induce an oxidant injury within the lung lining fluid and that the lung responds by increasing antioxidant levels. In summary, our EPFR-containing PM redox cycle to produce ROS, and these ROS are maintained in biological fluids and environments. Moreover, these ROS may modulate toxic responses of PM in biological tissues such as the lung. © 2013 American Chemical Society

    Radical-containing ultrafine particulate matter initiates epithelial-to-mesenchymal transitions in airway epithelial cells

    Get PDF
    Environmentally persistent free radicals (EPFRs) in combustion generated particulate matter (PM) are capable of inducing pulmonary pathologies and contributing to the development of environmental asthma. In vivo exposure of infant rats to EPFRs demonstrates their ability to induce airway hyperresponsiveness to methacholine, a hallmark of asthma. However, the mechanisms by which combustion-derived EPFRs elicit in vivo responses remain elusive. In this study, we used a chemically defined EPFR consisting of approximately 0.2 μm amorphrous silica containing 3% cupric oxide with the organic pollutant 1,2-dichlorobenzene (DCB-230). DCB-230 possesses similar radical content to urban-collected EPFRs but offers several advantages, including lack of contaminants and chemical uniformity. DCB-230 was readily taken up by BEAS-2B and at high doses (200 μg/cm2) caused substantial necrosis. At low doses (20 μg/cm2), DCB-230 particles caused lysosomal membrane permeabilization, oxidative stress, and lipid peroxidation within 24 hours of exposure. During this period, BEAS-2B underwent epithelial-to-mesenchymal transition (EMT), including loss of epithelial cell morphology, decreased E-cadherin expression, and increased α-smooth muscle actin (α-SMA) and collagen I production. Similar results were observed in neonatal air-liquid interface culture (i.e., disruption of epithelial integrity and EMT). Acute exposure of infant mice to DCB-230 resulted in EMT, as confirmed by lineage tracing studies and evidenced by coexpression of epithelial E-cadherin and mesenchymal α-SMA proteins in airway cells and increased SNAI1 expression in the lungs. EMT in neonatal mouse lungs after EPFR exposure may provide an explanation for epidemiological evidence supporting PM exposure and increased risk of asthma. Copyright © 2013 by the American Thoracic Society
    • …
    corecore