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ABSTRACT 
This manuscript describes a collaborative research effort between members of the Clean Sky Joint Technology 

Initiative (JTI), within the broader area of novel rotorcraft engine technology and rotorcraft operations. The 

Clean Sky JTI was created as a public/private partnership between the European Commission and the 

aeronautical industry. The paper assesses the impact of innovative engine technologies to be integrated into the 

next generation of rotorcraft and evaluates their potential towards meeting the ACARE 2020 goals. The focus is 

on the lower segment of the light helicopter class with a particular interest in the performance of two innovative 

powerplants: an advanced turboshaft with Lean Premixed Prevaporised (LPP) combustor design and a 

supercharged diesel cycle engine.  In order to evaluate their benefits alongside other Clean Sky technologies, a 

multi-disciplinary rotorcraft performance analysis framework (PhoeniX) is employed. Two variants of the same 

light helicopter platform with year 2020 technology plus Clean Sky innovations are modelled, named hereafter 

as Single Engine Light (SEL) Y2020 and High Compression Engine (HCE) Y2020, respectively. A turboshaft 

engine-powered helicopter, representative of year 2000 technology (SEL Y2000) is also modelled and used as 

reference. Payload-Range diagrams (PR) of the three vehicles were generated. The HCE Y2020 reached a 

maximum range 83% greater than the SEL counterparts. The gaseous emissions of the helicopters were also 

evaluated over three notional scenarios representative of light helicopter activities. The HCE Y2020 emitted 

60% less carbon dioxide (CO2) and 63% less nitrogen oxides (NOx) than the SEL Y2000. The SEL Y2020 

emitted on average 19% and 49% less CO2 and NOx, respectively, compared with the SEL Y2000. It was also 

observed that the NOx production rate of the LPP technology integrated in the SEL Y2020 combustor depends 

strongly on engine power setting. At certain power settings, the SEL Y2020 emitted less NOx than the HCE 

Y2020 even though the HCE Y2020 emitted less NOx over the complete mission. The direct comparison 

between SEL Y2020 and HCE Y2020 highlighted the superior performance of the HCE engine over the gas 

turbine for the mission types and rotorcraft class simulated. 
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NOMENCLATURE 
ACARE Advisory Council for Aeronautics Research in Europe 

CO2 Carbon dioxide 

EHOC European Helicopter Operator Committee 

EUROPA European Rotorcraft Performance Analysis code 

EW Empty Weight (kg) 

GRC Green Rotorcraft 

HCE High Compression Engine 

HELENA Helicopter Environmental Noise Analysis 

HOGE Hover Out of Ground Effect 

ISA International Standard Atmosphere 

ITD Integrated Technology Demonstrator 

LPP Lean Premixed Prevaporised 

MTOW Maximum Take-Off Weight (kg) 

JTI Joint Technology Initiative 

NOx Nitrogen oxides 

PhoeniX Platform Hosting Operational & Environmental Investigations for Rotorcraft 

PR Payload-Range  

RMEM Rotorcraft Mission Energy Management model  

SAGE Sustainable and Green Engine 

SL Sea Level 

SEL Single Engine Light 

SFC Specific Fuel Consumption (µg/J) 

SHE Safran Helicopter Engines 

TE Technology Evaluator 

Vr Maximum Range speed (m/s) 

 

1.0  INTRODUCTION 
Rotorcraft are versatile vehicles involved in a plethora of activities, ranging from heavy duty cargo to 

emergency medical services. They are a quick and safe alternative for daily transportation of passengers and 

goods in isolated areas as well as densely populated ones. Global aviation traffic is expected to rise sharply in 

the near future following the current commercial aviation trend [1]. One particular activity forecasted to expand 

is the passenger transport/air taxi with a two to three-fold increase in the 2015-2020 period [2]. In this context, 

there is a growing concern over the environmental impact of such activities. Currently, the aviation industry is a 

relatively small contributor to the global man-made carbon dioxide (CO2) footprint with 2% of the worldwide 

share [3]. The emission of this greenhouse effect gas is directly related to fuel consumption, thus fuel efficiency 

is one of the top concerns in the aerospace industry. Aircraft not only emit CO2 but also nitrogen oxides (NOx) 

which have negative effects on health. Ground noise impact is also seen as a concern. Indeed aircraft noise is the 

most significant cause of adverse community reaction related to the operation and expansion of airports [4]. 

The rising green philosophy is reflected in the environmental goals set by the Advisory Council for 

Aeronautics Research in Europe (ACARE) to be met by civil aviation to provide a sustainable aviation growth. 

These targets are summarised in the “Vision 2020” under the Strategic Research and Innovation Agenda and 

include reductions in CO2 and NOx emissions by 50% and 80% by 2020, respectively, relative to the year 2000 

technology [2]. These targets were extended in the “Flightpath 2050” agenda, with a 75% reduction of CO2 and 

90% of NOx emissions by 2050 relative to the year 2000 [5]. In order to meet these goals, the Clean Sky Joint 

Technology Initiative (JTI) was created as a public/private partnership between the European Commission and 

the aeronautical industry. Clean Sky aims to generate high-quality research within Europe with the ultimate goal 

of developing innovative environmentally friendly technologies.  

Clean Sky is composed of several Integrated Technology Demonstrators (ITDs), each one developing a 

different technology at engine or vehicle level to satisfy the aforementioned ACARE goals. With respect to 

rotorcraft technology, the contributing ITDs are the Green Rotorcraft (GRC) and the Sustainable and Green 

Engine (SAGE), alongside the Technology Evaluator (TE). The TE is the central body within Clean Sky 

responsible for the assessment of the innovative technologies developed by the ITDs, GRC and SAGE in the 

context of rotorcraft. The GRC ITD has set specific environmental performance objectives as illustrated in 

Figure 1. These targets are designated specifically for the Single Engine Light (SEL) helicopter category.  
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Figure 1 Expected GRC contribution for the light helicopter class [2] 

In response to the aforementioned requirements, the GRC ITD took the lead on six distinct projects, 

representative of technical areas where improvements are envisioned. As shown in Figure 2, the GRC ITD 

research fields span from the development of innovative rotors to rotorcraft airframe ecological design, 

including the integration of a High Compression Engine (HCE). The HCE is a supercharged diesel cycle engine 

developed for light helicopter propulsion purposes. Despite its higher weight compared with conventional 

turboshaft engines, piston engines present a lower Specific Fuel Consumption (SFC), reducing the CO2 

emissions. Moreover, supercharging allows the design of an engine with constant power rating through the 

entire operational envelope as opposed to gas turbine engines, which require an oversized powerplant to operate 

under hot & high conditions. The potential benefits of piston-engine-powered light helicopters are explored in 

the present work as a part of the Clean Sky TE activity. 

 

Figure 2 GRC technologies integration scheme  

Since their invention, rotorcraft have been powered by fossil fuel-based powerplants. Reciprocating engines 

were initially employed until the advent of the gas turbine [6]. Due to their high specific power output, 

turboshaft engines are the preferred powerplant for most rotorcraft, whilst reciprocating engines are uniquely 

used to power small lightweight helicopters. 

In order to bridge the gap between gas turbines and piston engines, Castor et al. [7] studied compound cycle 

engines more commonly known as turbocharged diesel engines. Three Brayton/diesel engine arrangements were 

investigated with three diesel engine designs. SFCs and engine weights were evaluated and their performances 

assessed over a nominal mission. The compound engine cycles were designed to conserve their power rating 

under hot and high conditions thanks to an increase of the trapped equivalence ratio and an increase of the gas 

generator speed to conserve the peak firing pressure of the piston cylinder. This process results in an increase of 

the engine SFC and more importantly in a flat-rated power. In comparison, a gas turbine engine must be 

oversized to alleviate altitude and temperature effects. This oversizing resulted in a 40% increase of the power 

rating at SL/ISA. The best compound cycle engine was then compared to the aforementioned gas turbine engine 
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over a nominal mission. Reductions of 31% in fuel consumption and 16% in engine plus fuel and fuel tank 

weight were observed for the compound engine cycle in comparison with the gas turbine engine. Although the 

study did not assess the environmental impact of such technology, it highlighted the need to evaluate the 

powerplants at mission level.  

As for turboshaft engines, SFC reductions can be achieved through efficiency improvement of individual 

turbomachinery components. Innovative engine cycles have the potential to further increase the overall engine 

efficiency. Recuperated gas turbines [8], regenerative powerplants [9], or reheat with interstage turbine burners 

[10] are currently considered for future engine designs.  

Considerable NOx emissions reductions are targeted along the fuel consumption savings. The NOx formation 

is a result of high combustion temperatures produced by the formation of local “hot spots” where combustion 

takes place at nearly stochiometric conditions. Therefore, one of the mechanisms to reduce the NOx production 

is a more homogeneous temperature distribution within the combustor. Lefebvre & Ballal [11] present several 

combustor concepts to effectively realise combustion out of stoichiometric conditions. Tacina et al. [12] also 

demonstrated the capabilities of low NOx lean direct injection for turbofan engines, achieving large reductions 

in NOx emissions when compared to conventional combustor designs.  

Advanced gas turbines and diesel engines provide two solutions to comply with the stringent aforementioned 

ACARE goals; however, no thorough assessment of such technologies has been carried out. Therefore, Clean 

Sky JTI investigates the potential benefits of diesel piston engines and lean combustion turboshaft engines, for 

small helicopter applications. This paper elaborates on the comparison between these two technologies. 

Performance and environmental impact are assessed for both powerplants. Three Single Engine Light (SEL) 

rotorcraft are modelled: a turboshaft engine powered configuration with year 2000 technology (SEL Y2000), a 

conceptual configuration corresponding to a turboshaft engine powered vehicle with projected technologies up 

until the year 2020 with Clean Sky innovations (SEL Y2020), and a HCE derivate from the conceptual SEL 

(HCE Y2020) and powered by a supercharged diesel cycle engine. 

The associated Payload-Range (PR) diagrams were generated for each vehicle and employed to assess the 

relative performance of each rotorcraft. The environmental impact assessment was carried out over three distinct 

missions, representative of typical lightweight helicopter applications i.e. passenger transport, police/law 

enforcement, and training. The gaseous emissions produced by each helicopter are computed herein and 

discussed. 

2.0  METHODOLOGY 

In order to effectively evaluate the environmental impact of the technologies developed by the GRC ITD, a 

method capable of estimating fuel burn, gaseous emissions, and ground noise impact for any designated 

rotorcraft mission is required. An integrated multi-disciplinary rotorcraft performance framework, named 

PhoeniX (Platform Hosting Operational & ENvironmental Investigations for Rotorcraft) was deployed [13]. 

PhoeniX is composed of a rotorcraft flight mechanics code (EUROPA), an engine performance simulation and 

gas emissions calculation code (Safran Helicopter Engines deck), a rotorcraft environmental noise analysis tool 

(HELENA), and a rotorcraft mission energy management module (RMEM). These individual tools were linked 

together using a simulation framework toolkit called OPTIMUS [14]. A brief description of the code is provided 

below. 

2.1 European Rotorcraft Performance Analysis code (EUROPA) 

EUROPA [15] was developed to determine helicopter steady state (trim) and dynamic (manoeuvre) 

performance. Steady-state linear blade element momentum theory is utilised to model the rotor as an infinitely 

thin disk. Elastic phenomena are not accounted for, blades are considered rigid instead. The validation of the 

code was completed using flight test data for trim performance and dynamic response in [16]. For the purpose of 

the present work, the helicopter is handled dynamically during take-off and landing phases whilst it is assumed 

to be operating in trim during cruise and climb/descent segments. 

2.2 Safran Helicopter Engines Deck 

The Safran Helicopter Engines (SHE) deck is able to evaluate the performance of gas turbine engines in steady-

state and transient conditions. It is built on a zero-dimensional component analysis based on discrete maps 
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modelling the thermodynamic processes occurring within the different engine components. For the concern of 

this work, the SHE deck was employed to calculate the engines steady-state off-design performance to evaluate 

the fuel burn, CO2 and NOx emissions.  

2.3 Helicopter Environmental Noise Analysis (HELENA) 

The HELENA [17] platform is able to compute helicopter noise footprints from experimental and numerical 

helicopter noise databases [18]. HELENA evaluates the noise perceived in terms of Sound Exposure Level, 

which is the parameter commonly used for cumulative exposure. Further discussion over helicopter noise 

emissions can be found in [19]. However, noise emissions analysis is out of the scope of the paper, therefore 

further elaborations shall be omitted. 

2.4 Rotorcraft Mission Energy Management Model (RMEM) 

With the developments in avionics, helicopters are getting more and more electric, and secondary systems are 

playing a greater part in the vehicle performance. The RMEM [20] simulates the rotorcraft subsystems requiring 

engine shaft-power and bleed off-takes. The RMEM comprises a series of analytical methods representing the 

actuation, electrical, fuel, and environment control systems. The operation of these helicopter subsystems results 

in time-dependent shaft-power and engine bleed air off-takes along the mission [20]. For the vehicles of interest, 

no bleed air off-take was considered. 

2.5 PhoeniX Platform 

Phoenix, as represented in Figure 3, integrates the above individual tools into a common simulation 

environment. In order to simulate complete helicopter missions, the mission profile is truncated into discrete 

segments based on user-defined time steps. Different time steps can be set for manoeuvres or dynamic task, and 

trimmed flight conditions. To start the calculation process, the on-board fuel supply is guessed to set the initial 

All-Up-Mass (AUM) of the vehicle. For each time step, EUROPA calculates the power required and updates the 

position of the rotorcraft following the flight path defined by the user. The SHE deck retrieves this information 

and calculates the engine off-design operating point taking into account the shaft-power off-take estimated by 

RMEM. The engine fuel flow and the emission indices for the segment are then evaluated. The AUM is 

subsequently updated, deducting the fuel burn on the segment in order to simulate the gradual weight reduction 

of the vehicle along the mission. Once the mission is completed, the overall fuel burn estimate is compared to 

the initial guess. If the discrepancy between the two values is above a certain margin, the numerical process 

reiterates with a new initial AUM. As soon as convergence is reached, the gaseous emissions are compiled. The 

trajectory data are also transferred to HELENA in order to determine the noise footprints for the given flight 

conditions. 

 

Figure 3 PhoeniX architecture overview 
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2.6  Rotorcraft configurations 

The focus in this paper is on the lower segment of the light helicopter class, representing helicopters with a 

Maximum Take-Off Weight (MTOW) below 4000 lb (1800 kg). Three rotorcraft configurations are modelled 

for the present analysis. The ACARE goals are relative to year 2000 technology, therefore a reference turboshaft 

powered light helicopter representing year 2000 technology is modelled. This platform is referred to as Single 

Engine Light Year 2000 (SEL Y2000). A single engine light helicopter with year 2020 technology including the 

GRC ITD technologies is also modelled. It includes two variants, one denoted as SEL Y2020 and powered by a 

turboshaft engine and the other named HCE Y2020 and powered by a supercharged diesel engine.    

The SEL Y2000 must be representative of the year 2000 technology level. The most typical vehicles 

representative of such technology are the Bell 206 (B III Jet Ranger and L3 Long Ranger), the Airbus Helicopter 

AS350 BA and the Hughes 500D. They account for most of the annual flight hours of helicopters with the 

technology level of interest. The SEL Y2000 model characteristics were therefore defined to be representative 

of the technology implemented in these vehicles. The Y2020 platforms (SEL and HCE) incorporate the 

innovative technologies developed within the GRC ITD [2] as listed below:  

 Passive Optimised Blades  

 Active devices/vortex generator on blunt fuselage, improved landing skids, hub cab and dynamic air 

intake  

 Integration of innovative electrical systems 

 Structural weight saving  

The implementation of these technologies results in a lighter and slender vehicle platform than the SEL Y2000. 

The engine model integrated into the SEL Y2020 intends to drastically reduce the NOx emissions with a Lean 

Premixed Prevaporised (LPP) combustor design. The combustion is completed in a lean environment with a 

uniform mixture to avoid locally stoichiometric zones of high temperature. The technology is widely used for 

ground-power application but not for aircraft. This is due to the higher pressures and temperatures and the wide 

range of duty cycle associated with aero-engines that may result in risks of auto-ignition and flow reversal in the 

premix zone [12]. However, the low rating power required for the SEL Y2020 (see Table 1) greatly lessens 

these risks. In order to avoid weak extinction in case of spontaneous reduction of engine power, the LPP system 

also integrates a pilot stage. The SHE deck takes into account the behaviour of the two injection systems (LPP 

and pilot stage) and the distribution of fuel injection between pilot and LPP stages [19]. 

As for the HCE Y2020, the vehicle platform is shared with the SEL Y2020, but the installed powerplant 

becomes a supercharged piston engine. Although it is a diesel cycle (constant pressure combustion), the fuel 

remains kerosene-type Jet-A. The model of the HCE follows the testing of a demonstrator engine flown on an 

Airbus Helicopter EC120. The engine model is provided by Siemens PLM Software and is integrated into 

Phoenix in a similar fashion as the SHE deck. Although the HCE is 28% heavier than the SEL Y2020 

powerplant, HCE Y2020 and SEL Y2020 have the same MTOW.  The fuel capacity of the HCE Y2020 is thus 

reduced by 21% in comparison to the SEL Y2020 in order to maintain the maximum payload capability. As 

previously mentioned, the power of the HCE can be maintained under higher/hotter conditions thanks to 

supercharging. Therefore, the engine can be sized to the main gearbox torque limitation. This design approach 

results in a 7.5% reduction of the HCE Y2020 take-off power at ISA/SL when compared to the SEL Y2020. 

Table 1 summarises the main features of the three vehicles.  

 

Table 1 RC main characteristics 

Parameter Unit SEL Y2000 SEL Y2020 HCE Y2020 

MTOW (internal load) [kg] 1765 1596 1596 

Empty weight fraction  [%] 55.0 54.4 57.4 

Useful load (Payload +Fuel) [kg] 412+292 412+232 412+183 

Take-off power @ ISA/SL [kW] 377 318 294 
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3.0  RESULTS 

In this section, the payload-range capabilities of the three light helicopters are first compared in order to 

appreciate the merits and drawbacks of the Clean Sky helicopter concepts. Then, in order to complete the 

analysis, the environmental impact of each rotorcraft is analytically assessed at mission level. CO2 and NOx 

emissions are evaluated and statistically compared.  

3.1 Payload-Range comparison 

The Payload-Range (PR) diagrams built for the three helicopters are defined by three points: maximum useful 

load (A), maximum range at maximum payload (B), and maximum range without payload (C). The point A is 

directly taken from the useful load of each vehicle given in  

Table 1. Points B and C require the definition of a mission procedure for each vehicle in order to establish the 

maximum range reachable with their respective fuel allowance. Thus, every mission is run following the same 

routine for take-off, climb, descent and landing. These segments are defined by GRC5. The mission is a single 

leg with a cruise altitude of 2500 ft. The reserve is defined as the fuel needed to realise a 60kts loiter for 20 

minutes at 2000 ft. The cruise speed is set as the best range speed (Vr), defined as the speed that minimises the 

ratio engine fuel flow over airspeed and so, maximises the range attainable. Max Range point and Vr are 

graphically defined in Figure 4. 

    
Figure 4 Definition of the best range speed 

 

The engine fuel flows of the three vehicles are plotted versus airspeed for AUM equals MTOW and Empty 

Weight (EW) in Figure 5. It is observed that Vr tends to decrease with a reduction of the AUM. However, the 

effect of the AUM on Vr differs for each helicopter platform; whilst AUM has a relatively low effect for the SEL 

Y2020, it has a large impact for the HCE Y2020. Note also that the SEL Y2020 has the highest V r out of the 

three vehicles. The missions simulated to generate the PR were run at constant cruise speed. This speed was 

defined as the Vr for the average AUM during the cruise segment. Once the maximum range is mathematically 

evaluated, a mission file is created to be run by PhoeniX. An iterative process over the mission range follows to 

adjust the maximum range evaluation to take into account all the mission segments and the gradual weight 

reduction of the vehicle. The same method is employed for the three vehicles.   

  
Figure 5 Engine fuel flow vs airspeed for the three helicopters 
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The SEL Y2020 was flown at the same speed for the two points of the diagram: B and C. The best range speed 

of the SEL Y2020 was 7% and 19% faster than the average Vr of the SEL Y2000 and the HCE Y2020, 

respectively. 3% and 10% differences were found between the Vr at maximum payload and no payload of the 

SEL Y2000 and the HCE Y2020, respectively. Finally, the PR diagrams of the three vehicles are shown in 

Figure 6. 

 
Figure 6 Lightweight helicopters Payload-Range comparison 

The PR diagrams of the two turboshaft-powered vehicles are similar. This highlights the method deployed in the 

design of the SEL Y2020 where the benefits of the GRC ITD technologies were translated into reduced fuel 

consumption rather than increased performance. It results in a 20% reduction of the fuel capacity of SEL Y2020 

compared to the SEL Y2000. Due to its higher empty weight, the HCE Y2020 has a theoretical 15% and 14% 

reduction in useful load compared to SEL Y2000 and SEL Y2020, respectively. However, the diesel engine 

powered helicopter presents greater ranges than the turboshaft-powered vehicles and depending on the real use 

of the helicopter, the payload penalty may never be seen. A 73% and 83% increase in range was found for 

points B and C, respectively, compared with the turboshaft powered SEL.  

3.2 Mission analysis 

As previously mentioned, the environmental impact assessment is carried out at mission level over three distinct 

missions representative of typical lightweight helicopter applications: passenger transport, police/law 

enforcement, and training. The profiles of these missions were designed following European Helicopter 

Operator Committee (EHOC) and Clean Sky partners’ advice with regard to flight procedures. As shown in 

Figures 7-8, the passenger mission is a succession of four pick-up & drop-off segments. The helicopter takes off 

from the helipad to pick-up the designated passenger(s) from a secondary location and transfers them to a drop-

off point. This procedure is repeated four times before the vehicle returns to the initial helipad. The hypothetical 

law enforcement scenario in Figures 9-10 represents a high altitude surveillance role over five adjacent areas. 

The scenario of the training mission is a combination of hover, climb, and level flight at various speeds and 

altitudes as illustrated in Figures 11-12. The different scenarios considered in the mission analysis cover the 

range of roles light helicopters perform. 

Figure 7 Passenger mission altitude and airspeed 

profiles 

   

 Figure 8 Passenger mission trajectory 
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Figure 9 Police mission altitude and airspeed profiles 

 

Figure 10 Police mission geographical trajectory 

Figure 11 Training mission altitude and airspeed profiles 

  

Figure 12 Training mission geographical trajectory 

The overall emissions results for each helicopter platform are summarised in Table 2 to Table 4, where CO2 and 

NOx emissions are compared and then statistically analysed. The NOx rate emission vs Power are also evaluated 

at SL/ISA conditions. The delta in CO2 emissions between the turboshaft-powered helicopters is consistent over 

the three scenarios, with 20% reduction achieved by the SEL Y2020 compared with the SEL Y2000. This is not 

the case for the NOx emissions, where the standard deviation is high (14%). An average 49% reduction in NOx 

emission is achieved by SEL Y2020. With regards to the HCE Y2020 gaseous emissions, CO2 and NOx 

emissions are 63% lower than the SEL Y2000 ones. The HCE Y2020 CO2 emissions are on average 53% lower 

than the SEL Y2020. The NOx emissions are once again largely dependent on the mission scenario with a 

standard deviation of 18%. On average, the HCE Y2020 emits 23% less NOx than the SEL Y2020 counterpart.  

Table 2 CO2 and NOx emissions comparison at Passenger mission 

Passenger 

SEL Y2020 vs  

SEL Y2000  

[%Δ] 

HCE Y2020 vs  

SEL Y2000  

[%Δ] 

HCE Y2020 vs  

SEL Y2020  

[%Δ] 

CO2 [kg] -21.5 -60.5 -49.8 

NOx [kg] -61.7 -65.3 -9.3 

Table 3 CO2 and NOx emissions comparison at Police mission 

Police 

SEL Y2020 vs  

SEL Y2000  

[%Δ] 

HCE Y2020 vs  

SEL Y2000  

[%Δ] 

HCE Y2020 vs  

SEL Y2020  

[%Δ] 

CO2 [kg] -18.5 -63.5 -55.3 

NOX [kg] -33.9 -62.6 -43.5 
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Table 4 CO2 and NOx emissions comparison at Training mission 

Training 

SEL Y2020 vs  

SEL Y2000  

%Δ 

HCE Y2020 vs  

SEL Y2000  

%Δ 

HCE Y2020 vs  

SEL Y2020  

%Δ 

CO2 [kg] -18.0 -64.0 -56.1 

NOX [kg] -52.1 -61.1 -18.8 

Figure 13 and Figure 14 show the CO2 and NOx production rates respectively for the police scenario. As 

expected, the HCE Y2020 presents the minimum CO2 production rate in all the flight segments. The regions 

observed with higher CO2 emission rates correspond to the flight legs where the helicopter transits between 

surveillance areas at high speed and altitude. As for the NOx emissions, the HCE Y2020 produces clearly less 

NOx at low power settings. However, during the transition segments, the SEL Y2020 NOx production rates are 

lower than during the surveillance segments. NOx emissions of the Y2020 vehicles cannot be put apart in the 

transition segments.  

 Figure 13 CO2 production rate comparison at Police 

mission 
 Figure 14 NOx production rate comparison at Police 

mission 

 

Figure 15 represents the NOx production rate of each vehicle over the first leg of the passenger mission. It shows 

that the SEL Y2020 presents a lower NOx production rate than the HCE Y2020 at cruise but the opposite is 

observed on the idle, take-off, and landing segments. Therefore, as 9 take-off and landing manoeuvres are 

performed during the passenger mission, the production rates at take-off and landing prevail over the cruise ones 

and, as a result, the NOx emissions for the SELY2020 are 9.3% higher compared to the HCE Y2020 at mission 

level. It demonstrates the dominant impact of the take-off and landing segments on the NOx emissions. The 

engines NOx production rates versus shaft power are plotted in Figure 16 to explain the aforementioned result. 

In this graph, it is noticeable that, whilst SEL Y2000 and HCE Y2020 NOx rates are essentially proportional to 

shaft power, the SEL Y2020 NOx production oscillates. These fluctuations are a direct cause of the presence of a 

pilot stage along the LPP ones (for low power rating) and the gradual distribution of the airflow to a number of 

stages when the power rating increases. The SEL Y2020 combustor is, therefore, more effective at certain power 

settings from the NOx production rate point of view. In particular, it is observed that for certain range of engine 

shaft power, the NOx rate of the HCE Y2020 is higher than the SEL Y2020 one. This fact explains that at cruise 

conditions, where the engine power demand is relatively high, the HCE Y2020 produces more NOx than the 

SEL Y2020 operating at same conditions.   
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Figure 15 NOx production rate comparison at passenger 

mission 1
st
 leg 

Figure 16 NOx production rate vs. Power at ISA/SL 

4.0  CONCLUSIONS 

An analytical method was presented to assess the benefits linked with the integration of the GRC ITD 

technologies in terms of rotorcraft performance and environmental impact. This methodology was employed to 

evaluate the environmental benefits of the integration of advanced powerplant into light helicopters. Three 

vehicles were modelled:  a turboshaft engine powered configuration with year 2000 technology, a conceptual 

configuration corresponding to a turboshaft-engine-powered vehicle with projected technologies up until the 

year 2020 with Clean Sky benefits, and a supercharged diesel cycle engine powered helicopter derivate from the 

conceptual SEL.  

The PR diagrams of the two turboshaft-powered helicopters demonstrate the method followed to design and 

integrate the Clean Sky technologies into the SEL Y2020 model, as the performances of these two vehicles are 

similar. As previously mentioned, the HCE Y2020 platform is based on the SEL Y2020 one, adapted to 

integrate the diesel engine. It signifies an increase in vehicle empty weight at a cost of a lower fuel available in 

order to maintain the MTOW. Despite the lower fuel available, the HCE Y2020 demonstrates a maximum range 

83% greater than the turboshaft-powered models.  

The gaseous emissions of the vehicles were evaluated over three scenarios representative of the activities of 

light helicopters. On these missions, the HCE Y2020 surpasses the goals set by GRC, achieving over 60% 

reduction in both NOx and CO2 emissions when compared to the SEL Y2000. The SEL Y2020, on the other 

side, just reaches the designated goals with emissions cut by 19% and 49% for CO2 and NOx, respectively, when 

compared to SEL Y2000. However, the SEL Y2020 performs greater over shorter scenarios when compared to 

SEL Y2000 as seen in reference [20]. The direct effect of the LPP technology implemented in the SEL Y2020 

was also discussed. The NOx production rate is fluctuating with the engine shaft power, resulting in regions 

where the LPP turboshaft emits less NOx than the HCE. Finally, the direct comparison between SEL Y2020 and 

HCE Y2020 highlighted the superior performance of HCE engine over the conventional gas turbine for the 

simulated missions.  
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