4 research outputs found

    Insulin Resistance and Metabolic Hepatocarcinogenesis with Parent-of-Origin Effects in AĂ—B Mice

    Get PDF
    Insulin resistance is a defining feature of metabolic syndrome and type 2 diabetes mellitus but also may occur independently of these conditions. Nonalcoholic fatty liver disease (NAFLD), the hepatic manifestation of these disorders, increases the risk of hepatocellular carcinoma (HCC). However, mechanisms linking hyperinsulinemia to NAFLD and HCC require clarification. We describe a novel model of primary insulin resistance and HCC with strong parent-of-origin effects. Male AB6F1 (A/JCr dam × C57BL/6 sire) but not B6AF1 (B6 dam × A/J sire) mice developed spontaneous insulin resistance, NAFLD, and HCC without obesity or diabetes. A survey of mitochondrial, imprinted, and sex-linked traits revealed modest associations with X-linked genes. However, a diet-induced obesity study, including B6.A chromosome substitution–strain (consomic) mice, showed no segregation by sex chromosome. Thus, parent-of-origin effects were specified within the autosomal genome. Next, we interrogated mechanisms of insulin-associated hepatocarcinogenesis. Steatotic hepatocytes exhibited adipogenic transition characterized by vacuolar metaplasia and up-regulation of vimentin, adipsin, fatty acid translocase (CD36), peroxisome proliferator–activated receptor-γ, and related products. This profile was largely recapitulated in insulin-supplemented primary mouse hepatocyte cultures. Importantly, pyruvate kinase M2, a fetal anabolic enzyme implicated in the Warburg effect, was activated by insulin in vivo and in vitro. Thus, our study reveals parent-of-origin effects in heritable insulin resistance, implicating adipogenic transition with acquired anabolic metabolism in the progression from NAFLD to HCC.National Institutes of Health (U.S.) (NIH grant AA016563)National Institutes of Health (U.S.) (NIH grant CA067529)National Institutes of Health (U.S.) (NIH grant P01CA0267)National Institutes of Health (U.S.) (NIH grant P30ES02109)National Institutes of Health (U.S.) (NIH grant RR007036)National Institutes of Health (U.S.) (NIH grant CA158661)National Institutes of Health (U.S.) (NIH grant CA016086

    Sex Hormone Influence on Hepatitis in Young Male A/JCr Mice Infected with Helicobacter hepaticus▿ †

    No full text
    Hepatitis B virus (HBV), the leading cause of human hepatocellular carcinoma, is especially virulent in males infected at an early age. Likewise, the murine liver carcinogen Helicobacter hepaticus is most pathogenic in male mice infected before puberty. We used this model to investigate the influence of male sex hormone signaling on infectious hepatitis. Male A/JCr mice were infected with H. hepaticus or vehicle at 4 weeks and randomized into surgical and pharmacologic treatment groups. Interruption of androgen pathways was confirmed by hormone measurements, histopathology, and liver gene and Cyp4a protein expression. Castrated males and those receiving the competitive androgen receptor antagonist flutamide had significantly less severe hepatitis as determined by histologic activity index than intact controls at 4 months. Importantly, the powerful androgen receptor agonist dihydrotestosterone did not promote hepatitis. No effect on hepatitis was evident in males treated with the 5α-reductase inhibitor dutasteride, the peroxisome proliferator-activated receptor-α agonist bezafibrate, or the nonsteroidal anti-inflammatory drug flufenamic acid. Consistent with previous observations of hepatitis-associated liver-gender disruption, transcriptional alterations involved both feminine (cytochrome P450 4a14) and masculine (cytochrome P450 4a12 and trefoil factor 3) genes, as well gender-neutral (H19 fetal liver mRNA, lipocalin 2, and ubiquitin D) genes. Hepatitis was associated with increased unsaturated C18 long-chain fatty acids (oleic acid and linoleic acid) relative to saturated stearic acid. Our results indicate that certain forms of androgen interruption can inhibit H. hepaticus-induced hepatitis in young male mice, whereas androgen receptor agonism does not worsen disease. This raises the possibility of targeted hormonal therapy in young male patients with childhood-acquired HBV
    corecore